International Journal of Education in Mathematics, Science and Technology
Volume 2, Number 2, April 2014, Page 96-106
ISSN: 2147-611X
Worksheet Usage, Reading Achievement, Classes Lack of Readiness, and
Science Achievement: A Cross-Country Comparison
Che-Di Lee
*
National Taiwan Normal University
Abstract
Instructional written materials play important roles as teachers agents in effective teaching practices.
Worksheets are one of the most frequently used materials. In this exploratory study, the relationships between
worksheet usage and science achievement in 32 countries were examined through the use of TIMSS and PIRLS
data and multiple regression analysis. Based on two dimensions, five types of relationships among science
achievement, worksheet usage, and other related variables are identified. The first dimension is whether the
status of significance in the association of worksheets used as a basis and science achievement changes before
and after controlling four teacher and school variables: schools emphases on academic success, safety and
orderliness of school, teachers confidence in teaching science, and instructional engagement of students. The
second dimension is the interaction of worksheets as a basis and classes lack of readiness. The interaction
between worksheets as a basis and reading achievement in science achievement is found to be not significantly
different from zero in all participating countries. Four directions of further investigation are suggested based on
the results.
Key words: Science education, Worksheets, Elementary education, Secondary analysis
Introduction
Worksheets have been used in teaching practices for a long time. In modern time, worksheets have even become
a driving force of curriculum in some countries (Lesley & Labbo, 2003; Martin, Mullis, Foy, & Stanco, 2012;
Reid, 1984). Anderson et al. (1985) reported that in 1985, thousands of elementary students in the United States
completed approximately 1,000 worksheets per person to acquire literacy in a school year. Teachers use
worksheets for the purposes of supporting studying, promoting active learning, raising interest in learning
science, and assessment. Many studies suggest that well-designed worksheets have had positive impacts on
students’ learning achievement (Sasmaz-Oren & Ormanci, 2012). However, researchers observed that there
were many inappropriately designed and misused worksheets that hindered learning (Lesley & Labbo, 2003). In
this exploratory study, the relationships between worksheet usage and science achievement in 32 countries are
examined.
Worksheet and Achievement
Worksheets can be useful in many ways in terms of academic achievement. For example, as supplements to
textbooks, worksheets can be used to add information for particular classes. In addition, blanks in worksheets
are invitations for students to fill in gaps; they are opportunities for knowledge construction. Well-designed
questions in worksheets can draw students interest when paired with proper teaching methods. Furthermore,
worksheets play a variety of functions in different contexts. McDowell and Waddling (1985) suggested that
during laboratory investigations, properly designed worksheets can help teachers overcome the problems of time
demanding and enable teachers to enhance students acquisition of knowledge and skills. Kisiel (2003) pointed
that in activities while visiting museums, worksheets can function as advance organizers, helping students to
organize their observations and knowledge in a confusing learning environment. Krombab and Harms (2008)
concluded that worksheets are effective in helping students aged 1115 to acquire knowledge such as
*
Corresponding Author: Che-Di Lee, ch[email protected]u.tw
96
Lee
biodiversity in a natural history museum because they can structure the visit, keep students attention on certain
objects, and form a basis for follow-up coursework. As an assessment tool, worksheets can be used by teachers
to understand students previous knowledge, outcome of learning, and the process of learning; at the same time,
they can be used to enable students to monitor the progress of their own learning.
In order to ensure worksheets effectiveness, many studies focused on the design of worksheets (Campbell,
1999; Hoener, Salend, & Kay, 1997; Sasmaz-Oren & Ormanci, 2012). The basis for successfully transferring
message to students is layout. To enhance teachers abilities to design worksheets, Rotter (2006) proposed the
layout principle COLA (contrast, orientation, lettering, and artwork). In worksheets, characteristics of questions
are important factors. Calderhead et al. (2006) demonstrated that the arrangement of items with different levels
of cognitive difficulty can affect students learning results. Formats of information, or scaffolds, in worksheets
are also of concern to educators. For instance Wolf et al. (2010) devised three formats of critical thinking tools
to promote conceptual understanding in physical geography and Ueckert and Gess-Newsome (2008) advocated
for a “conceptual flow graphic to make active learning possible.
In addition to the positive impacts of worksheets on academic achievement, there are negative impacts. Lesley
and Labbo (2003) argued that mass-produced worksheets are not helpful for achieving educational goals.
Although the worksheets they observed were focused on literacy learning, their findings can still shed some
light on worksheet usage for science learning. According to their remarks, the aspects of worksheet problems
included the format of texts (e.g., that the print and the spaces allotted for students to write in are too small);
reading demand (e.g., that the language of instruction was too complex and required teacher explanation);
openness of questions, some of which offered only one correct way to respond and could not reward students for
their natural curiosity; the challenge of tasks (e.g., that tasks were boring or designed for practicing skills
repeatedly instead of making students learn new strategies or techniques), and the relationship between students
interests and tasks. In addition to the quality issues, as students completing worksheets, their cognitive processes
can also make worksheets invalid. Ueckert and Gess-Newsome (2008) noted that students use a word-matching
strategy match words in questions with the corresponding sentences in the textbook, and this keeps them in a
passive learning status.
Worksheet, Reading Achievement, and Science Achievement
Worksheets are a kind of written material, so reading demand may be a barrier to students with low reading
abilities. Researchers suggested that teachers should use easier language to support students (Rix, 2006). For
example, O’Leary (2011) designed a format of worksheets with low average reading difficulty. Questions in the
beginning are carefully matched with low reading ability students and subsequent questions require increasing
levels of literacy. The result showed that this kind of worksheets can improve student engagement and on-task
behavior during independent worksheet activities. There are a number of factors contributing to reading
difficulty, such as organization of materials, syntax, word length, sentence length, word frequency, typeface, and
line spacing (Department of Education and Science, 2007; Meyer, 2003; OLeary, 2011). If teachers carefully
control these factors and use available readability formulas to reduce the reading demand, or offer oral
explanations to words in worksheets, the association between worksheet usage and science achievements will be
the same regardless of students reading achievements.
The debate about the difficulty of language used in worksheets has been raised in literature (O’Leary, 2011).
Some researchers insist that easy language negates worksheets’ abilities to challenge students and offer
opportunities of language acquisition (Hayes, Wolfer, & Wolfe, 1996). In addition, although there are rules for
controlling the reading demand, according to Reid’s (1984) study, only about 30% of worksheet writers checked
readability despite knowing that it is the essential. Under this kind of condition, students with low reading
abilities have problems completing worksheets and the associations between worksheet usage and science
achievement therefore differ among students with different reading levels.
Worksheet, Lack of Readiness, and Science Achievement
According to Reid (1984), teachers tend to use worksheets with low-achievement classes. The reasons for this
tendency may be twofold. One is that textbooks are designed for general students and need to be adapted.
However, worksheets can offer relevant questions and motivate students, both of which are functions that were
ranked as best performed by teachers surveyed in the Reid’s (1984) study. Secondly, as written material,
worksheets are able to act as agents of teachers to lead students attentions and give students opportunities to
work independently, so the students can work at their own paces and the teacher can have time to take care of
those students who need more help (McDowell & Waddling, 1985).
97
IJEMST (International Journal of Education in Mathematics, Science and Technology)
If worksheets are properly designed and used, they can support students thought. However, many teachers are
concerned by the repetitive nature of worksheets, the risks of student boredom, and a lack of the pedagogical
knowledge and skills required to prevent children from thinking insufficiently before completing worksheets
(Reid, 1984). These factors may cause failure in the application of worksheets in classes lacking readiness.
Research Questions
The purpose of this study is to explore the association between worksheet usage and science achievement in
grade four students across the countries in the fifth cycle of the Trends in International Mathematics and Science
Study (TIMSS 2011) and the third cycle of the Progress in International Reading Literacy Study (PIRLS 2011).
To gain an overview of the association, the first question that arises is: Is there difference in science
achievement between situations in which worksheets are used as a basis for instruction and those in which they
are used as supplements, and between those in which they are used as supplements and those in which they are
not used?
To avoid the confounding effect of other teacher and school level variables, the four important variables,
schools emphasis on academic success (EAS), safty and orderliness of school (SOS), teachers confidence in
teaching science (CTS), and instructional engagement of students (IES), identified by Martin et al. (2012) are
controlled. Accordingly, the second question is After the four variables are controlled, is there difference in
science achievement (SA) between those situations in which worksheets are used as a basis (WB) and those in
which they are not used as a basis?
In considering the issues about reading achievement (RA) and classes lack of readiness (LR), the third and
fourth questions examine whether RA contributes to explanations of the variability in the relationship between
WB and SA and whether LR contributes to explanations of the variablility in the relationship between
worksheet as a basis (WB) and SA.”
Method
Sample
This study is a secondary analysis research. Data were collected in TIMSS 2011 and PIRLS 2011. Thirty-four
countries participated in both surveys (Martin & Mullis, 2013). The target population is grade four students in
thirty-two countries and grade six students in two countries. In this study, the data from the thirty-two countries
were analyzed.
TIMSS and PIRLS use two-stage stratified cluster sampling design (Martin et al., 2012). In each county, schools
were selected first and one or two classes were selected from those schools. The students in the selected classes
composed the sample. The sample size of each country was ranged from 3,121 to 14,720.
Dataset Preparation
After scaling, the International Association for the Evaluation of Educational Achievement (IEA) released the
TIMSS and PIRLS 2011 datasets in September 2013. In the datasets, there are reading, science, and
mathematics achievement scores with five plausible values; responses of items in achievement tests and
background questionnaires; and derived background variables, such as students confidence in learning science,
teachers confidence in teaching science, and safety and orderliness of school (Foy, 2013).
In this study, there is one dependent variable, SA, and seven independent variables: WB, RA, LR, EAS, SOS,
CTS, and IES. SA and RA are achievement scores. EAS, SOS, CTS, and IES are derived teacher and school
variables. The above six variables can be directly retrieved from the datasets provided by IEA (Foy, 2013). WB
and LR are defined in this study as the following.
Worksheet usage was one item in the teacher questionnaire (Martin et al., 2012). Teachers were asked when
they taught science to the class how they used workbooks or worksheets.” There were three options for them to
choose from: basis for instruction, supplement, and not used. Because the percentage of teachers who did
98
Lee
not use workbooks or worksheets was small or even zero in some countries, the responses were recorded in two
categories, as a basis and not as a basis.
The variable of LR was constructed with the use of three items in the teacher questionnaire. In the questionnaire,
teachers were asked to what extent students lacking prerequisite knowledge or skills,” disruptive students,”
and uninterested students limited how they taught their classes. There were four options for them to choose
from: “a lot, some, not at all, and “not applicable. Every item was recoded in two-level variable: A lot or
some (level 1) and not at all or not applicable (level 0).” The three indicators were treated as formative, and
LR was the standardized sum of the three recoded variables.
Analytical Strategy
Multiple regression is used to answer the research questions. The issue of estimation of standard error has to be
addressed first because the sampling method in TIMSS and PIRLS is stratified cluster sampling instead of
simple random sampling. To correctly estimate sampling error, the Jackknife repeated replication methodology
was applied. To correctly estimate measurement error, the plausible-value method was applied. The IDB
Analyzer developed by the IEA Data Processing and Research Center (2013) was used with the statistical
software SPSS to implement the two above methods in regression analysis.
To test the significance of the differences between group means of science achievement, Model 0 was analyzed.
Model 0:
WNOcWABc
WNOWAB
0
cSA
WAB stands for “using worksheets as a basis” and WNO stands for not using worksheets.” The reference
group is students taught by teachers using worksheets as supplements (WSP). The value of c
WAB
is the
difference in average science achievements for students taught by teachers WAB and WSP. The value of c
WNO
is
the difference in average science achievements for students taught by teachers WNO and WSP.
To examine the effect of controlling the four teacher and school variables (EAS, SOS, CTS, and IES), Model 1
and Model 2 were compared.
Model 1:
WB stands for using worksheets as a basis. The value of c
WB
is the difference in average science achievements
for students taught by teachers using worksheets as a basis and not as a basis.
Model 2:
IEScCTScSOScEAScWBc
IESCTSSSEASWB
00
cSA
To test the significance of the interaction between WB and RA in SA, Model 3 was analyzed. In Model 3, RA is
centered on class mean because the relationship between RA and SA on an individual level is concerned and so
RA should not include the effect of class-level and above-class-level variables (Hoffman & Gavin, 1998).
Model 3:
)()(
cSA
00
class
RAWB
class
RA
IESCTSSSEASWB
RARAWBcRARAc
IEScCTScSOScEAScWBc
To test the significance of the interaction between WB and LR on SA, Model 4 was analyzed.
Model 4:
LRWBcLRc
RARAWBcRARAc
IEScCTScSOScEAScWBc
LRWRLR
class
RAWB
class
RA
IESCTSSSEASWB
)()(
cSA
00
99
IJEMST (International Journal of Education in Mathematics, Science and Technology)
Results
Association between Worksheet Usage and Science Achievement
As shown in Table 1, on average across countries, 42% of students used worksheets as a basis, 56% of students
used worksheets as supplements, and only 2% of students did not use worksheets. The percentage of students
not using worksheets is larger than 5% only in five countries, Australia, Finland, Iran, Malta, and Sweden, and
is zero in five countries, Croatia, Georgia, Norway, Singapore, and Taiwan.
Table 1 shows that the difference in average science achievements for students taught by teachers using
worksheets as a basis and as supplements is significant in eight out of the 32 countries. The average science
achievement of students taught by teachers using worksheets as a basis is higher in only two of the eight
countries, the Czech Republic and Saudi Arabia. The international average difference is significantly less than
zero (-4.2).
Association between Worksheet Usage and Science Achievement after Controlling Teacher and School
Variables
Table 2 provides the information about the difference in average science achievements between students taught
by teachers using worksheets as a basis and not as a basis (as seen in the column of WB in Model 1. i.e., the
coefficient of WB). As shown in the coefficient of WB in Model 2 (Table 2), after controlling the variables of
EAS, SOS, CTS, and IES, the difference in average science achievements for students taught by teachers using
worksheets as a basis and those taught by teachers not using them as a basis is significantly different from zero
in six countries. In five out of the six countries, Italy, Northern Ireland, Qatar, Saudi Arabia, and the United
Arab Emirates, the difference is significant in Model 1, too. The sixth country is Germany, in which the
difference is insignificant in Model 1. After controlling the four teacher and school variables, the coefficient of
WB is insignificant in the Czech Republic, Malta, and Singapore while the coefficient is significant before
controlling the four variables (Model 1) in these three countries.
Interaction between Worksheets as a Basis and Reading Achievement
The coefficient of WB*RA in Model 3 (Table 2) show there is no statistically significant interaction between
worksheets as a basis and reading achievement in the prediction of science achievement in all countries.
Interaction between Worksheets as a Basis and Classs Lack of Readiness
According to the information provided by Table 2 in the column WB*LR, the interaction between WB and LR
in students science achievement is significant in eight out of the 32 countries. In the eight countries, the
coefficient of the interaction term is positive in six countries and negative in two countries.
The coefficient is positive for students in Australia, Finland, Morocco, Norway, Qatar, and the United Arab
Emirates. The positive value of the coefficient of WB*LR means that the effect of WB on science achievement
for students in classes lacking readiness is higher than it for those in classes not lacking readiness. For example,
in Finland, after controlling EAS, SOS, CTS, EIS, and RA, the association of WB and SA for students in classes
not lacking readiness (LR=0) is -1.4 and is not significantly different from zero; the association for students in
classes lacking readiness (LR=1) is 8.6 (=-1.4+10.0), which is significantly different from zero. In other words,
in Finland, worksheets are more effective for students in classes lacking readiness to learn science. In Qatar and
the United Arab Emirates, the situation is slightly different. In both countries in which the association for
students in classes not lacking readiness (LR=0) is negative (-64.3 and -33.2), the association for students in
classes lacking readiness (LR=1) is still negative (-38.1 and -10.5). In spite of this, the effect size becomes
smaller, which means the negative association of worksheets is reduced when they are applied to classes lacking
readiness.
On the contrary, in Italy and Malta, the coefficient is negative. Worksheets in both countries are less effective
for students in classes lacking readiness to learn science. After controlling EAS, SOS, CTS, EIS, and RA, the
association of WB and SA for students in classes not lacking readiness (LR=0) is -11.7 for Italy and 5.1 for
Malta; the association for students in classes lacking readiness (LR=1) is -31.5 for Italy and 1.2 for Malta.
100
Lee
Table 1: Worksheet usage and average science achievement (results from Model 0)
Country
Worksheet As a Basis
Worksheet as Supplements
Worksheet Not Used
SA
WAB
SA
WSP
SA
WNO
SA
WSP
Percent of
Students
Average SA
Percent of
Students
Average SA
Percent of
Students
Average SA
Australia
15.5 (3.2)
504.8 (8.7)
75.9 (3.7)
518.5 (4.0)
8.6 (2.4)
513.2 (9.4)
-13.8 (9.5)
-5.3 (10.5)
Austria
33.3 (2.9)
530.2 (3.8)
66.5 (2.9)
526.5 (3.0)
0.2 (0.2)
532.6 (5.8)
3.7 (4.4)
6.1 (6.9)
Azerbaijan
33.9 (3.8)
448.2 (9.0)
65.4 (3.9)
426.6 (7.8)
0.7 (0.5)
410.3 (11.4)
21.6 (11.5)
-16.2(14.2)
Croatia
28.7 (3.4)
511.7 (3.0)
71.3 (3.4)
513.0 (2.2)
0.0 (0.0)
- -
-1.2 (3.6)
- -
Czech Rep.
44.9 (3.8)
538.3 (3.7)
51.9 (3.8)
527.9 (3.1)
3.2 (1.6)
539.9 (10.1)
10.4 (4.9)*
12.0 (10.6)
Finland
39.6 (3.0)
565.4 (3.3)
54.2 (3.3)
570.3 (2.6)
6.2 (1.7)
565.3 (12.4)
-4.9 (3.9)
-5.0 (13.1)
Georgia
53.7 (4.1)
449.4 (6.0)
46.3 (4.1)
451.8 (5.6)
0.0 (0.0)
- -
-2.4 (9.0)
- -
Germany
58.4 (3.5)
523.3 (3.1)
41.4 (3.5)
529.3 (3.4)
0.1 (0.1)
519.4 (11.7)
-6.0 (4.7)
-9.9 (12.4)
Hong Kong
44.3 (4.8)
543.7 (4.3)
55.0 (4.7)
532.1 (4.1)
0.7 (0.7)
548.1 (6.9)
11.6 (6.1)
16.0 (7.2)*
Hungary
70.3 (3.3)
528.9 (4.8)
27.7 (3.4)
531.2 (7.9)
2.0 (0.9)
537.9 (20.7)
-2.3 (10.3)
6.6 (23.2)
Iran
14.9 (3.3)
438.1 (11.5)
78.8 (3.5)
454.1 (4.5)
6.3 (1.5)
398.9 (20.6)
-16.0(13.5)
-55.2(21.4)*
Ireland
11.7 (2.3)
503.9 (8.9)
85.5 (2.6)
514.1 (3.4)
2.9 (1.2)
521.4 (11.5)
-10.2 (9.8)
7.3 (11.2)
Italy
23.3 (3.3)
505.7 (7.1)
76.0 (3.2)
528.1 (2.6)
0.7 (0.7)
458.4 (7.0)
-22.4 (7.5)*
-69.7 (0.0)
Lithuania
69.7 (3.6)
509.8 (2.8)
30.1 (3.5)
510.0 (5.1)
0.2 (0.2)
462.2 (8.4)
-0.2 (6.0)
-47.8(10.5)*
Malta
33.7 (0.1)
437.3 (2.6)
58.1 (0.1)
444.5 (2.1)
8.2 (0.1)
438.2 (3.8)
-7.3 (2.7)*
-6.3 (4.2)
Morocco
67.9 (3.3)
240.8 (5.6)
28.0 (3.3)
243.0 (10.3)
4.2 (1.5)
275.6 (35.9)
-2.2 (12.7)
32.7 (38.5)
North. Ireland
16.3 (3.0)
498.9 (6.7)
82.2 (3.2)
516.7 (3.3)
1.5 (1.1)
489.8 (22.6)
-17.8 (7.5)*
-26.8(23.4)
Norway
39.2 (5.2)
489.4 (4.2)
60.8 (5.2)
488.6 (2.4)
0.0 (0.0)
- -
0.8 (4.6)
- -
Oman
45.5 (3.1)
361.9 (5.6)
54.3 (3.1)
376.1 (5.7)
0.2 (0.1)
353.9(103.6)
-14.2 (8.1)
-22.2(103.4)
Poland
57.8 (3.8)
499.0 (3.1)
41.9 (3.9)
500.3 (3.0)
0.4 (0.4)
556.4 (7.3)
-1.3 (4.2)
56.0 (0.0)
Portugal
34.5 (4.0)
523.8 (4.8)
63.6 (4.1)
516.2 (5.4)
1.9 (1.5)
488.3 (7.0)
7.6 (7.0)
-27.8 (8.6)*
Qatar
57.0 (2.9)
359.2 (7.4)
41.5 (3.1)
419.4 (10.7)
1.5 (0.9)
492.3 (20.7)
-60.1(14.1)*
72.9 (25.9)*
Romania
35.8 (4.1)
499.0 (9.0)
64.0 (4.2)
501.2 (8.5)
0.1 (0.1)
438.9 (17.3)
-2.2 (12.5)
-62.3(19.1)*
Russian Fed.
47.7 (4.2)
551.5 (4.7)
50.8 (4.1)
545.8 (4.0)
1.4 (0.8)
548.7 (66.6)
5.8 (5.8)
3.0 (66.8)
Saudi Arabia
51.6 (4.0)
441.7 (7.3)
46.6 (3.9)
402.4 (9.0)
1.8 (0.9)
441.4 (46.5)
39.3(12.3)*
39.0 (48.2)
Singapore
68.6 (2.6)
574.6 (4.3)
31.4 (2.6)
589.4 (5.6)
0.0 (0.0)
- -
-14.8 (7.3)*
- -
Slovak Rep.
38.5 (3.0)
530.3 (5.3)
58.9 (3.2)
527.8 (3.8)
2.6 (1.3)
474.1 (22.7)
2.5 (5.7)
-53.7(23.4)*
Slovenia
50.3 (3.8)
512.5 (2.7)
48.2 (3.9)
520.3 (3.3)
1.5 (0.8)
504.8 (21.0)
-7.8 (4.6)
-15.5(20.6)
Spain
34.0 (3.7)
507.9 (5.2)
63.9 (3.7)
498.7 (3.6)
2.0 (0.9)
495.3 (17.7)
9.2 (6.5)
-3.5 (18.1)
Sweden
18.5 (3.8)
527.5 (8.0)
67.5 (4.7)
531.4 (4.0)
14.0 (3.6)
539.9 (4.6)
-3.9 (8.2)
8.6 (6.1)
Taiwan
44.2 (4.1)
549.0 (2.6)
55.8 (4.1)
547.6 (3.0)
0.0 (0.0)
- -
1.4 (4.3)
- -
UAE
53.5 (2.4)
406.5 (3.9)
45.9 (2.4)
442.9 (5.2)
0.6 (0.2)
440.2 (42.5)
-36.4 (7.7)*
-2.7 (42.9)
Int. Average
41.8 (0.6)
487.9 (1.0)
55.9 (0.6)
492.1 (0.9)
2.3 (0.2)
480.9 (5.8)
-4.2 (1.4)*
-6.3 (6.0)
Note: SA
WAB
=Average science achievement of students using worksheets as a basis; SA
WSP
= Average science achievement of students
using worksheets as supplements; SA
WNO
= Average science achievement of students not using worksheets; UAE = United Arab Emirates
(): Standard errors appear in parentheses. *p< .05
101
IJEMST (International Journal of Education in Mathematics, Science and Technology)
Table 2: Coefficients for multiple regression analysis
Country
Model
Worksheet
as a Basis
(WB)
Reading
Ach. (RA)
WB*RA
Lack of
Readiness
(LR)
WB*LR
Controlled Variable
EAS
SOS
CTS
IES
Australia
M1
-13.2 (9.4)
M2
-8.2 (9.6)
3.2 (2.1)
7.1(2.2)*
0.7 (1.5)
1.8 (1.9)
M3
-5.7 (9.6)
0.76 (0.02)*
0.03 (0.05)
3.1 (2.1)
7.1(2.2)*
1.0 (1.4)
1.7 (1.9)
M4
-14.0(12.5)
0.76 (0.02)*
0.03 (0.04)
-17.2(3.0)*
35.4(15.6)*
1.0 (2.1)
5.9(2.2)*
2.0 (1.3)
0.1 (1.9)
Austria
M1
3.7 (4.4)
M2
-0.1 (4.2)
4.8 (1.4)*
4.4(1.5)*
-2.4(1.2)*
-1.7 (1.3)
M3
-0.6 (4.2)
0.85 (0.01)*
-0.04(0.03)
4.8 (1.4)*
4.4(1.6)*
-2.2 (1.2)
-1.6 (1.2)
M4
-0.8 (4.2)
0.84 (0.01)*
-0.04(0.03)
-3.7 (2.4)
-2.7 (3.8)
4.3 (1.4)*
3.8(1.6)*
-2.5(1.2)*
-2.0 (1.3)
Azerbaijan
M1
21.8 (11.5)
M2
18.5 (11.5)
4.7 (2.6)
0.0 (3.1)
2.7 (4.9)
1.9 (3.4)
M3
18.4 (11.4)
0.54 (0.04)*
-0.04(0.07)
4.7 (2.6)
0.0 (3.1)
2.6 (5.0)
1.7 (3.4)
M4
21.0 (12.7)
0.52 (0.04)*
-0.03(0.08)
-7.8 (6.3)
5.0 (9.6)
3.4 (3.0)
-0.7 (3.2)
5.2 (4.7)
-0.3 (3.4)
Croatia
M1
-1.2 (3.6)
M2
-0.7 (3.6)
3.5 (1.4)*
-1.2 (1.2)
-1.6 (1.1)
1.3 (1.2)
M3
-1.5 (3.7)
0.77 (0.02)*
-0.01(0.02)
0.5 (0.9)
-0.8 (1.2)
-1.5 (1.0)
1.2 (1.2)
M4
0.8 (4.2)
0.77 (0.02)*
-0.01(0.02)
-2.2 (2.4)
5.6 (3.7)
0.6 (0.9)
-0.8 (1.2)
-1.5 (1.0)
1.4 (1.1)
Czech
Republic
M1
9.7 (4.8)*
M2
9.0 (4.9)
0.6 (0.9)
-1.8 (1.1)
0.7 (1.4)
1.4 (1.5)
M3
9.9 (4.8)*
0.88 (0.03)*
0.01 (0.03)
2.3 (1.4)
-1.5 (1.2)
0.6 (1.4)
1.4 (1.5)
M4
8.7 (4.9)
0.88 (0.03)*
0.01 (0.03)
-6.7 (3.8)
1.3 (5.4)
1.9 (1.4)
-1.7 (1.2)
0.3 (1.4)
1.5 (1.3)
Finland
M1
-4.4 (3.9)
M2
-4.4 (3.7)
2.2 (1.5)
5.0(1.0)*
-0.5 (1.1)
0.7 (1.3)
M3
-4.7 (3.5)
0.73 (0.02)*
0.00 (0.03)
1.0 (1.4)
5.2(1.0)*
-0.2 (1.1)
0.2 (1.4)
M4
-1.4 (3.8)
0.73 (0.02)*
0.00 (0.03)
-7.7 (2.2)*
10.0 (3.6)*
0.9 (1.3)
4.2(1.1)*
0.0 (1.0)
-0.6 (1.4)
Georgia
M1
-2.4 (9.0)
M2
-4.2 (9.1)
1.2 (1.4)
1.8 (2.8)
-0.9 (2.7)
-0.7 (2.2)
M3
-4.5 (9.1)
0.82 (0.02)*
-0.03(0.02)
5.1 (2.2)*
2.0 (2.8)
-0.8 (2.6)
-0.5 (2.2)
M4
-9.7 (9.2)
0.82 (0.02)*
-0.02(0.02)
2.2 (4.2)
-7.6 (5.7)
4.9 (2.2)*
2.0 (2.9)
-0.7 (2.6)
-0.4 (2.1)
Germany
M1
-5.9 (4.7)
M2
-8.8 (3.4)*
5.1 (2.2)*
2.3 (1.4)
-0.9 (1.4)
-4.3(1.3)*
M3
-8.4 (3.3)*
0.78 (0.04)*
0.03 (0.03)
10.4(1.8)*
2.6 (1.3)
-0.8 (1.4)
-4.6(1.3)*
M4
-7.2 (3.4)*
0.78 (0.04)*
0.03 (0.03)
-4.4 (3.3)
1.0 (4.5)
9.8 (1.8)*
3.0(1.3)*
-1.1 (1.4)
-4.8(1.3)*
Hong Kong
M1
11.4 (6.1)
M2
10.3 (6.0)
10.7(1.8)*
1.4 (1.9)
-3.3(1.4)*
-1.1 (1.6)
M3
9.8 (6.0)
0.72 (0.03)*
0.01 (0.04)
-0.1 (1.6)
1.5 (2.0)
-3.5(1.4)*
-1.1 (1.6)
M4
7.5 (6.1)
0.72 (0.03)*
0.01 (0.04)
-3.5 (3.7)
-6.8 (4.1)
-0.4 (1.5)
0.7 (2.0)
-3.8(1.3)*
-1.6 (1.6)
Hungary
M1
-2.8 (9.8)
M2
-8.7 (8.4)
0.0 (1.6)
4.6 (2.4)
-4.7 (1.8)*
-2.1 (1.9)
M3
-10.1 (8.5)
0.82 (0.02)*
0.02 (0.03)
11.6(2.0)*
5.0(2.4)*
-5.0 (1.9)*
-1.9 (1.9)
M4
-10.8 (8.4)
0.82 (0.02)*
0.02 (0.03)
-0.5 (5.9)
-5.1 (7.2)
11.3(2.0)*
4.1 (2.4)
-5.0 (1.9)*
-2.7 (1.9)
Iran
M1
-11.9 (13.5)
M2
-13.0 (14.3)
11.9(2.0)*
4.1 (2.4)
-2.5 (2.8)
3.9 (2.5)
M3
-13.4 (14.3)
0.87 (0.02)*
-0.02(0.04)
7.4 (2.5)*
3.9 (2.4)
-2.5 (2.8)
3.9 (2.5)
M4
-17.4 (13.8)
0.87 (0.02)*
-0.02(0.04)
-8.9 (5.7)
-15.2(11.9)
7.1 (2.5)*
1.9 (2.5)
-4.4 (3.0)
4.6 (2.4)
Note: EAS = Emphasis on Academic Success; SOS = Safety and Orderliness of School; CTS = Confidence in Teaching Science; IES =
Instructional Engagement of Students.
(): Standard errors appear in parentheses. *p< .05
102
Lee
Table 2 (cont.): Coefficients for multiple regression analysis
Country
Model
Worksheet
as a Basis
(WB)
Reading
Ach. (RA)
WB*RA
Lack of
Readiness
(LR)
WB*LR
Controlled Variable
EAS
SOS
CTS
IES
Ireland
M1
-10.4 (9.8)
M2
-4.8 (9.5)
7.3 (2.5)*
5.9(1.8)*
3.4(1.6)*
-4.7(1.7)*
M3
-4.3 (9.8)
0.78 (0.02)*
0.04 (0.04)
5.9 (1.5)*
6.1(1.7)*
3.1 (1.6)
-4.9(1.6)*
M4
-2.6 (9.6)
0.78 (0.02)*
0.04 (0.04)
-4.7 (2.5)
6.8 (8.0)
5.3 (1.5)*
5.5(1.7)*
2.7 (1.6)
-4.7(1.7)*
Italy
M1
-21.8(7.5)*
M2
-18.9(8.0)*
5.7 (1.5)*
3.0 (2.1)
-0.2 (1.9)
-1.8(1.4)
M3
-19.0(7.9)*
0.78 (0.02)*
-0.02(0.04)
0.0 (1.7)
3.0 (2.1)
-0.3 (1.9)
-1.5 (1.4)
M4
-11.7 (7.8)
0.78 (0.02)*
-0.01(0.04)
10.4 (4.2)*
-19.8(6.5)*
1.1 (1.7)
3.7 (2.1)
-0.7 (1.9)
-2.8(1.3)*
Lithuania
M1
0.2 (5.9)
M2
-2.7 (5.8)
0.2 (1.7)
1.2 (1.6)
-1.3 (1.7)
0.1 (1.6)
M3
-3.1 (5.7)
0.75 (0.03)*
0.01 (0.04)
5.4 (2.0)*
1.1 (1.6)
-1.5 (1.7)
0.2 (1.6)
M4
-4.0 (6.1)
0.75 (0.03)*
0.01 (0.04)
-7.1 (5.2)
1.2 (5.5)
4.7 (2.0)*
1.1 (1.6)
-1.9 (1.7)
-0.1 (1.6)
Malta
M1
-6.5 (2.6)*
M2
3.6 (2.6)
5.8 (1.9)*
4.4(0.7)*
2.8(0.6)*
-6.1(0.8)*
M3
4.2 (1.6)*
0.74 (0.02)*
0.00 (0.04)
5.1 (0.5)*
4.2(0.5)*
2.8(0.4)*
-6.1(0.5)*
M4
5.1 (1.5)*
0.74 (0.02)*
0.00 (0.04)
0.5 (0.9)
-3.9 (1.5)*
5.1 (0.5)*
4.1(0.6)*
2.9(0.4)*
-6.0(0.5)*
Morocco
M1
-6.5 (12.4)
M2
-9.5 (12.8)
4.8 (0.6)*
6.3(3.0)*
1.2 (4.1)
3.5 (3.1)
M3
-7.4 (12.8)
0.66 (0.05)*
0.01 (0.06)
6.7 (4.3)
6.0(3.0)*
1.6 (4.1)
3.4 (3.0)
M4
-39.7(21.5)
0.66 (0.05)*
0.01 (0.06)
-51.2(23.1)*
57.2(25.1)*
7.7 (4.3)
5.7(2.8)*
1.0 (4.1)
1.3 (2.9)
Northern
Ireland
M1
-17.3(7.5)*
M2
-18.6(6.9)*
7.1 (4.3)
5.8(1.8)*
-0.1 (1.5)
-1.7 (1.8)
M3
-19.4(6.9)*
0.69 (0.01)*
-0.04(0.06)
3.3 (1.7)*
6.0(1.8)*
-0.1 (1.5)
-2.0 (1.8)
M4
-22.5(6.9)*
0.70 (0.01)*
-0.04(0.05)
-6.8 (2.9)*
-10.7 (5.8)
2.2 (1.6)
4.7(1.7)*
0.2 (1.4)
-1.9 (1.9)
Norway
M1
0.8 (4.6)
M2
1.0 (4.0)
3.2 (1.7)
3.0 (1.6)
-2.5 (1.4)
1.4 (1.5)
M3
0.7 (4.1)
0.78 (0.03)*
0.02 (0.04)
5.2 (1.5)*
3.1(1.6)*
-2.4 (1.3)
1.0 (1.4)
M4
4.7 (4.8)
0.78 (0.03)*
0.02 (0.04)
-9.8 (2.3)*
11.2 (4.5)*
4.8 (1.4)*
3.2(1.5)*
-2.8 (1.4)
0.6 (1.4)
Oman
M1
-14.1 (8.1)
M2
-12.0 (7.1)
5.1 (1.5)*
5.8(2.8)*
-3.6 (2.7)
2.2 (2.5)
M3
-11.4 (7.2)
0.92 (0.02)*
0.01 (0.02)
7.2 (2.3)*
5.5(2.8)*
-3.6 (2.7)
2.3 (2.5)
M4
-14.4(7.1)*
0.92 (0.02)*
0.01 (0.02)
-2.3 (7.1)
3.6 (8.9)
6.8 (2.4)*
5.0 (2.9)
-2.5 (2.7)
2.3 (2.6)
Poland
M1
-1.8 (4.1)
M2
-4.4 (3.9)
7.2 (2.4)*
-
3.6(1.6)*
1.7 (1.5)
-1.3 (1.1)
M3
-5.3 (3.9)
0.84 (0.02)*
0.01 (0.03)
3.6 (1.5)*
-3.2(1.6)*
1.6 (1.5)
-1.4 (1.1)
M4
-5.3 (3.9)
0.83 (0.02)*
0.01 (0.03)
-1.8 (2.7)
-2.6 (4.2)
3.6 (1.5)*
-4.0(1.5)*
1.6 (1.5)
-1.5 (1.2)
Portugal
M1
8.4 (7.0)
M2
8.3 (7.8)
3.8 (1.4)*
0.6 (2.7)
-0.8 (2.1)
-1.6 (1.5)
M3
7.5 (7.9)
0.77 (0.02)*
-0.05(0.03)
9.6 (2.2)*
0.9 (2.7)
-0.7 (2.1)
-1.5 (1.5)
M4
7.6 (7.5)
0.77 (0.02)*
-0.05(0.03)
-0.4 (6.2)
1.0 (7.2)
9.6 (2.5)*
0.9 (2.7)
-0.8 (1.9)
-1.5 (1.5)
Qatar
M1
-62.7(13.4)*
M2
-61.4(14.0)*
9.4 (2.2)*
4.7 (3.1)
0.5 (4.2)
-3.4 (4.0)
M3
-61.4(14.0)*
0.83 (0.03)*
0.05 (0.04)
5.5 (4.4)
4.9 (3.1)
0.8 (4.2)
-3.3 (4.0)
M4
-64.3(13.2)*
0.83 (0.03)*
0.05 (0.04)
-38.1(8.0)*
26.2(9.8)*
3.3 (4.1)
3.7 (3.5)
0.1 (3.6)
-4.0 (3.7)
Note: EAS = Emphasis on Academic Success; SOS = Safety and Orderliness of School; CTS = Confidence in Teaching Science; IES =
Instructional Engagement of Students.
(): Standard errors appear in parentheses. *p< .05
103
IJEMST (International Journal of Education in Mathematics, Science and Technology)
Table 2 (cont.): Coefficients for multiple regression analysis
Country
Model
Worksheet
as a Basis
(WB)
Reading
Ach. (RA)
WB*RA
Lack of
Readiness
(LR)
WB*LR
Controlled Variable
EAS
SOS
CTS
IES
Romania
M1
-2.0 (12.5)
M2
-0.8 (12.5)
5.9 (4.3)
-2.6 (3.9)
-11.4(5.0)*
-0.8 (2.8)
M3
-2.0 (12.5)
0.85 (0.03)*
-0.01(0.03)
10.2(3.1)*
-2.8 (3.9)
-11.8(5.0)*
-0.5 (2.9)
M4
-3.7 (11.6)
0.85 (0.03)*
0.00 (0.03)
-25.4(8.5)*
5.9 (9.9)
7.7 (2.9)*
-5.3 (4.0)
-9.0 (4.8)
-0.8 (3.0)
Russian
Federation
M1
5.7 (5.7)
M2
5.1 (5.6)
9.8 (3.1)*
-0.3 (2.3)
0.0 (3.3)
2.3 (1.9)
M3
4.5 (5.6)
0.71 (0.03)*
-0.01(0.03)
3.0 (2.0)
-0.3 (2.4)
-0.2 (3.3)
2.3 (1.9)
M4
6.3 (6.7)
0.71 (0.03)*
-0.01(0.03)
-2.5 (4.5)
4.6 (6.1)
2.5 (2.3)
-0.3 (2.5)
-0.1 (3.3)
2.4 (1.9)
Saudi
Arabia
M1
37.9(12.1)*
M2
23.8(12.1)*
2.8 (2.0)
-1.6 (3.7)
4.1 (4.2)
0.5 (2.7)
M3
23.2 (12.0)
0.82 (0.02)*
0.00 (0.04)
7.6 (3.0)*
-1.9 (3.6)
4.5 (4.3)
0.8 (2.7)
M4
32.9(11.6)*
0.82 (0.02)*
-0.01(0.04)
8.0 (8.2)
-14.4(10.4)
7.3 (3.3)*
-2.8 (3.6)
3.5 (4.4)
1.3 (2.7)
Singapore
M1
-14.8 (7.3)*
M2
-12.1 (7.0)
8.1 (3.0)*
3.6 (2.4)
-2.2 (1.8)
-2.1 (1.5)
M3
-13.1 (7.0)
0.81 (0.03)*
-0.01(0.04)
6.7 (2.4)*
3.3 (2.4)
-2.2 (1.8)
-1.9 (1.5)
M4
-11.3 (6.3)
0.80 (0.03)*
0.00 (0.03)
-26.7(7.1)*
0.7 (7.8)
4.8 (2.2)*
1.0 (2.2)
-3.1 (1.7)
-3.4(1.5)*
Slovak
Republic
M1
4.8 (5.8)
M2
0.2 (5.8)
6.6 (2.4)*
-0.4 (2.8)
-1.3 (1.6)
-2.3 (1.9)
M3
1.0 (5.8)
0.85 (0.02)*
-0.04(0.03)
9.8 (3.0)*
-0.4 (2.8)
-1.1 (1.6)
-2.4 (1.9)
M4
-2.4 (8.1)
0.85 (0.02)*
-0.04(0.03)
-7.6 (3.4)*
-1.0 (5.7)
7.8 (3.1)*
-0.5 (3.0)
-1.0 (1.6)
-2.9 (2.0)
Slovenia
M1
-7.3 (4.7)
M2
-7.5 (4.9)
9.8 (3.0)*
1.2 (1.3)
0.1 (1.0)
-2.1 (1.3)
M3
-7.5 (4.8)
0.83 (0.02)*
0.03 (0.03)
3.2 (1.4)*
1.1 (1.3)
0.2 (1.0)
-2.0 (1.2)
M4
-8.2 (4.7)
0.83 (0.02)*
0.03 (0.03)
-12.3(4.3)*
7.6 (4.8)
2.1 (1.5)
0.7 (1.2)
0.4 (1.0)
-2.2 (1.2)
Spain
M1
9.3 (6.5)
M2
4.8 (6.6)
3.1 (1.4)*
4.6(1.7)*
1.0 (1.8)
-1.0 (1.6)
M3
5.5 (6.5)
0.75 (0.03)*
0.04 (0.04)
3.0 (1.8)
5.0(1.6)*
0.9 (1.8)
-1.2 (1.6)
M4
5.3 (7.1)
0.75 (0.02)*
0.04 (0.04)
-6.4 (3.3)
2.4 (5.1)
2.6 (1.8)
4.3(1.6)*
1.2 (1.9)
-1.4 (1.7)
Sweden
M1
-5.4 (7.9)
M2
-11.6 (7.3)
3.0 (1.8)
7.6(1.6)*
-3.0 (1.4)*
2.8 (1.4)*
M3
-11.8 (7.3)
0.84 (0.03)*
0.05 (0.04)
3.7 (1.6)*
7.3(1.6)*
-3.1 (1.5)*
2.8 (1.4)*
M4
-20.6 (10.7)
0.84 (0.03)*
0.05 (0.04)
2.5 (2.7)
-7.7 (8.2)
4.3 (1.5)*
7.1(1.5)*
-2.6 (1.4)
3.1 (1.4)*
Taiwan
M1
1.4 (4.3)
M2
-0.5 (4.2)
3.1 (1.5)*
-0.2 (1.4)
1.1 (1.4)
-0.2 (1.1)
M3
-0.6 (4.2)
0.82 (0.02)*
-0.01(0.02)
3.7 (1.4)*
-0.2 (1.4)
1.1 (1.4)
-0.3 (1.1)
M4
-1.0 (4.4)
0.82 (0.02)*
-0.01(0.02)
-4.2 (3.3)
2.9 (3.9)
3.3 (1.5)*
-0.3 (1.4)
1.1 (1.4)
-0.4 (1.1)
UAE
M1
-36.4 (7.7)*
M2
-34.1 (7.6)*
7.7 (2.0)*
2.2 (2.4)
2.1 (3.1)
-0.5 (1.7)
M3
-33.4 (7.6)*
0.84 (0.02)*
0.02 (0.02)
7.8 (2.0)*
2.1 (2.4)
2.4 (3.1)
-0.7 (1.7)
M4
-33.2 (7.3)*
0.84 (0.02)*
0.02 (0.02)
-30.7(4.9)*
22.7(7.0)*
5.3 (1.9)*
0.4 (2.2)
1.8 (3.0)
-1.8 (1.7)
Note: EAS = Emphasis on Academic Success; SOS = Safety and Orderliness of School; CTS = Confidence in Teaching Science; IES =
Instructional Engagement of Students; UAE = United Arab Emirates.
(): Standard errors appear in parentheses. *p< .05
Discussion and Conclusion
Instructional written materials play important roles as teachers agents in effective teaching practices.
Workbooks and worksheets are one of the most frequently used materials (Table 1). Based on the result of this
study, the association of worksheet usage and science achievement is found to be quite different across
104
Lee
countries. To sum up the result, there are five types of relationships among science achievement, worksheet
usage, and other related variables (Table 3).
Type 1: The association between WB and SA remains the same regardless of whether or not teacher and
school variables are controlled, and no interaction is present between WB and LR in SA.
Type 2: The association between WB and SA depends on whether or not teacher and school variables are
controlled, and no interaction is present between WB and LR in SA.
Type 3: The association between WB and SA remains the same regardless of whether or not teacher and
school variables are controlled, and a positive interaction is present between WB and LR in SA.
Type 4: The association between WB and SA remains the same regardless of whether or not teacher and
school variables are controlled and a negative interaction is present between WB and LR in SA.
Type 5: The association between WB and SA depends on whether or not teacher and school variables are
controlled, and a negative interaction is present between WB and LR in SA.
In addition, there is no significant interaction between WB and RA in all participating countries.
Table 3: Relationships among worksheet usage, science achievement, and other variables
Type
Association btw WB & SA
after controlling variables
WB*LR
Country
No
Teacher and
school variables
1a
~S
~S
~S
Austria, Azerbaijan, Croatia, Czech Republic
a
,
Georgia, Hong Kong, Hungary, Iran, Ireland,
Lithuania, Oman, Poland, Portugal, Romania,
Russian Federation, Slovak Republic, Slovenia,
Spain, Sweden, Taiwan
1b
N
N
~S
Northern Ireland
1c
P
P
~S
Saudi Arabia
2a
N
~S
~S
Singapore
2b
~S
N
~S
Germany
3a
~S
~S
P
Australia, Finland, Morocco, Norway
3b
N
N
P
Qatar, United Arab Emirates
4
N
N
N
Italy
5
N
~S
N
Malta
Note: ~S = Not significantly different from zero; P = Significantly positive; N = Significantly negative.
a
: Although the association between WB and SA is significantly different from zero, none of the teacher and school variables
are significantly related to SA.
Based upon the above findings, there are four directions of further investigation to identify important features of
designing and applying worksheets through comparisons across countries in future studies.
Firstly, the international comparison can be made among three groups of countries to identify the related factors
in predicting science achievement. In most countries, there is no association between WB and SA, including
countries of type 1a and 3a. Only in Saudi Arabia is the association positively different from zero. In the four
countries of type 1b, 3b, and 4, the association is negatively different from zero.
One explanation of the negative association between worksheet usage and science achievement is that teachers
tended to use worksheets in low-achievement classes, as Reid (1984) reported. If this is true, teachers
perceptions of class achievement may be the cause of the negative association. However, after the introduction
of the variable of classes lack of readiness in Model 4, the association in the four countries, Northern Ireland,
Qatar, the United Arab Emirates, and Italy, remains the same (Table 2). Consequently, there are other factors
that have yet to be uncovered.
The second direction of future investigation is the relationship between worksheet usage and other teacher and
school factors. After controlling the teacher and school variables, EAS, SOS, CTS, and IES, for type 2 and 5
countries (Singapore, Germany, and Malta), the association between WB and SA changed. For Singapore, the
variable EAS is significantly related to SA in Model 2. For Germany, the significantly relative variables are
EAS and IES. For Malta, the relative variables are EAS, SOS, CTS, and IES (Table 2). These results imply that
these teacher and school variables, worksheet usage, and science achievement are correlated in these countries.
105
IJEMST (International Journal of Education in Mathematics, Science and Technology)
It is worth inquiring why these teacher and school variables and worksheet usage are correlated and how they
together influence students science achievement.
Thirdly, the mechanisms that make worksheets more effective for students in classes lacking readiness than
those in classes not lacking readiness are worth looking at further. It would be easier to find out the mechanisms
through the use of data from countries of type 3 (Australia, Finland, Morocco, Norway, Qatar, and the United
Arab Emirates), which have positive interactions between WB and LR in Model 4 (Table 2). Data from Italy
and Malta could also be used as contrast. To find the mechanisms, more data about worksheet design and about
teaching and learning with worksheets should be collected. For example, strategies that students use to complete
worksheets are important factors related to their achievement but are not well documented.
The last direction of further inquiry is identifying the factors that result in no interaction between worksheet
usage and reading achievement in science achievement. The result of no interaction between WB and RA may
be caused by appropriate matching of language levels of worksheets with students reading abilities, but it might
also be caused by teachers explanations before students starting to work on worksheets. The data collected by
TIMSS and PIRLS 2011 cannot help us to identify the cause. To resolve this problem, data about evaluation on
language demand of worksheets and the teaching methods accompanying worksheets need to be collected.
Acknowledgements or Notes
The author wish to thank the project (NSC 101-2511-S-003-021) funded by National Science Council of
Taiwan.
References
Anderson, R. C., Hiebert, E. H., Scott, J. A., & Wilkinson, I. A. G. (1985). Becoming a nation of readers: The
report of the Commission on Reading. Washington, DC: National Academy of Education, National Institute
of Education, Center for the Study of Reading.
Calderhead, W. J., Filter, K. J., & Albin, R. W. (2006). An investigation of incremental effects of interspersing
math items on task-related behavior. Journal of Behavioral Education, 15(1), 5165.
Campbell, C. P. (1999). Instructional materials: Their preparation and evaluation. Journal of European
Industrial Training, 23(2), 55107.
Department of Education and Science (2007). Inclusion of students with special educational needs: Post
primary guidelines. Dublin: Stationery Office.
Foy, P. (2013). TIMSS and PIRLS 2011 user guide for the fourth grade combined international database.
Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Lynch School of Education, Boston
College and IEA.
Hayes, D. P., Wolfer, L. T., & Wolfe, M. F. (1996). Schoolbook simplification and its relation to the decline in
SAT-Verbal scores. American Educational Research Journal, 33(2), 489508.
Hoener, A., Salend, S., & Kay, S. I. (1997). Creating readable handouts, worksheets, overheads, tests, review
materials, study guides, and homework assignments through effective typographic design. Teaching
Exceptional Children, 29(3), 3235.
Hoffman, D. A., & Gavin, M. B. (1998). Centering decisions in hierarchical linear models: Implications for
research in organizations. Journal of Management, 23, 723744.
IEA Data Processing and Research Center (2013). IDA analyzer. Amsterdam, Netherlands: IEA. Retrieved from
http://www.iea.nl/eula.html.
Kisiel, J. F. (2003). Teachers, museums and worksheets: A closer look at a learning experience. Journal of
Science Teacher Education, 14(1), 321.
Krombab, A., & Harms, U. (2008). Acquiring knowledge about biodiversity in a museum - Are worksheets
effective? Journal of Biological Education, 42(4), 157163.
Lesley, M., & Labbo, L. D. (2003). A pedagogy of control: Worksheets and the special need child. Language
Arts, 80(6), 444.
Martin, M. O., & Mullis, I. V. S. (Eds.) (2013). TIMSS and PIRLS 2011: Relationships among reading,
mathematics, and science achievement at the fourth grade - Implications for early learning. Chestnut Hill,
MA: TIMSS & PIRLS International Study Center, Lynch School of Education, Boston College and IEA.
Martin, M. O., Mullis, I. V. S., Foy, P., & Stanco, G. M. (2012). TIMSS 2011 international results in science.
Chestnut Hill, M.A.: TIMSS & PIRLS International Study Center.
McDowell, E. T., & Waddling, R. E. L. (1985). Improving the design of laboratory worksheets. Journal of
106
Lee
Chemical Education, 62(11), 10371038.
Meyer, B. J. F. (2003). Text coherence and readability. Topics in Language Disorders, 23(3), 204-224.
O'Leary, S. (2011). The inclusive classroom: Effect of a readability intervention on student engagement and on-
task behaviour within two mixed-ability science classrooms. Science Education International, 22(2), 145
151.
Reid, D. (1984). Readability and science worksheets in secondary schools. Research in Science and
Technological Education, 2(2), 153165.
Rix, J. (2006). Simplified language materials: Their usage and value to teachers and support staff in mainstream
settings. Teaching and Teacher Education, 22(8), 11451156.
Rotter, K. (2006). Creating instructional materials for all pupils: Try COLA. Intervention in School and Clinic,
41(5), 273282.
Sasmaz-Oren, F., & Ormanci, U. (2012). An application about pre-service teachers' development and use of
worksheets and an evaluation of their opinions about the application. Educational Sciences: Theory and
Practice, 12(1), 263270.
Ueckert, C. W., & Gess-Newsome, J. (2008). Active learning strategies. Science Teacher, 75(9), 4752.
Wolf, J., Stanton, M., & Gellott, L. (2010). Critical thinking in physical geography: Linking concepts of content
and applicability. Journal of Geography, 109(2), 4353.