DHS Science and Technology Directorate | MOBILIZING INNOVATION FOR A SECURE WORLD
CLEARED FOR PUBLIC RELEASE
DHS SCIENCE
AND TECHNOLOGY
Master Question List for
COVID-19 (caused by
SARS-CoV-2)
Weekly Report
04 August 2020
For comments or questions related to the contents of this document, please contact the DHS S&T
Hazard Awareness & Characterization Technology Center at HACTechno[email protected].gov.
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/04/2020
i
FOREWORD
The Department of Homeland Security (DHS) is paying close attention to the evolving Coronavirus
Infectious Disease (COVID-19) situation in order to protect our nation. DHS is working very closely with
the Centers for Disease Control and Prevention (CDC), other federal agencies, and public health officials
to implement public health control measures related to travelers and materials crossing our borders
from the affected regions.
Based on the response to a similar product generated in 2014 in response to the Ebolavirus outbreak in
West Africa, the DHS Science and Technology Directorate (DHS S&T) developed the following “master
question listthat quickly summarizes what is known, what additional information is needed, and who
may be working to address such fundamental questions as, What is the infectious dose? and How
long does the virus persist in the environment? The Master Question List (MQL) is intended to quickly
present the current state of available information to government decision makers in the operational
response to COVID-19 and allow structured and scientifically guided discussions across the federal
government without burdening them with the need to review scientific reports, and to prevent
duplication of efforts by highlighting and coordinating research.
The information contained in the following table has been assembled and evaluated by experts from
publicly available sources to include reports and articles found in scientific and technical journals,
selected sources on the internet, and various media reports. It is intended to serve as a “quick
reference” tool and should not be regarded as comprehensive source of information, nor as necessarily
representing the official policies, either expressed or implied, of the DHS or the U.S. Government. DHS
does not endorse any products or commercial services mentioned in this document. All sources of the
information provided are cited so that individual users of this document may independently evaluate the
source of that information and its suitability for any particular use. This document is a “living document”
that will be updated as needed when new information becomes available.
CLEARED FOR PUBLIC RELEASE
The Department of Homeland Security Science and Technology Directorate is committed to providing access to our
web pages for individuals with disabilities, both members of the public and federal employees. If the format of any
elements or content within this document interferes with your ability to access the information, as defined in the
Rehabilitation Act, please contact the Hazard Awareness & Characterization Technology Center for assistance by
emailing [email protected]. A member of our team will contact you within 5 business days. To
enable us to respond in a manner most helpful to you, please indicate the nature of your accessibility problem, the
preferred format in which to receive the material, the web address (https://www.dhs.gov/publication/st-master-
question-list-covid-19) or name of the document of the material (Master Question List for COVID-19) with which
you are having difficulty, and your contact information.
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEA
RED FOR PUBLIC RELEASE 1
Table of Contents
Infectious Dose How much agent will make a healthy individual ill? ..................................................................................... 3
The human infectious dose of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unknown by all exposure
routes. Studies from other animal models are used as surrogates for humans. Based on primate models, the inhalation
median infectious dose (ID
50
) in humans is likely less than 10,000 PFU, and possibly less than 1,000 PFU.
Identifying the infectious dose for humans by the various routes through which we become infected is critical to the
effective development of computational models to predict risk, develop diagnostics and countermeasures, and effective
decontamination strategies. Animal studies are a plausible surrogate.
Transmissibility How does it spread from one host to another? How easily is it spread? ...................................................... 4
SARS-CoV-2 is passed easily between humans, likely through close contact with relatively large droplets and possibly through
smaller aerosolized particles.
Individuals can transmit SARS-CoV-2 to others before they have symptoms.
Undetected cases play a major role in transmission, and most cases are not reported.
661
Individuals who have recovered clinically, but test positive, appear unable to transmit COVID-19.
285
The relative contribution of different routes of transmission, such as close contact and droplet transmission versus aerosol
transmission and contaminated objects and surfaces (fomites), is unknown and requires additional research.
Host Range How many species does it infect? Can it transfer from species to species? ......................................................... 5
SARS-CoV-2 is closely related to other coronaviruses circulating in bats in Southeast Asia. Previous coronaviruses have
passed through an intermediate mammal host before infecting humans, but the presence or identity of the SARS-CoV-2
intermediate host is unknown. Current evidence suggests a direct jump from bats to humans is plausible.
58
SARS-CoV-2 uses the same receptor for cell entry as the SARS-CoV-1 coronavirus that circulated in 2002/2003.
To date, ferrets, mink, hamsters, cats, deer mice, and primates have been shown to be susceptible to SARS-CoV-2 infection.
It is unknown whether these animals can transmit infection to humans.
The best animal model for replicating human infection by various routes is still unidentified.
Incubation Period How long after infection do symptoms appear? Are people infectious during this time? .......................... 6
The majority of individuals develop symptoms within 14 days of exposure. For most people, it takes at least 2 days to
develop symptoms, and on average symptoms develop 5 days after exposure. Incubating individuals can transmit disease for
several days before symptom onset. Some individuals never develop symptoms but can still transmit disease.
While the incubation period is well-characterized overall, the duration of infectivity is poorly understood in different patient
populations (e.g., age, disease severity).
Clinical Presentation What are the signs and symptoms of an infected person? ................................................................... 7
Most symptomatic cases are mild, but severe disease can be found in any age group.
4
Older individuals and those with
underlying conditions are at higher risk of serious illness and death.
Approximately 40% of cases are asymptomatic.
433
The case fatality rate is unknown, but individuals >60 and those with comorbidities are at elevated risk of death.
562, 675
Minority populations are disproportionately affected by COVID-19.
Children are susceptible to COVID-19,
155
though generally show milder
105, 361
or no symptoms.
Both the duration and prevalence of debilitating symptoms that inhibit an individual’s ability to function are not understood.
The true case fatality rate is unknown.
Protective Immunity How long does the immune response provide protection from reinfection? ........................................ 8
Infected patients show productive immune responses, but the duration of any protection is unknown. Initial evidence
suggests that the neutralizing antibody response does not last more than a few months, though this varies by severity.
Currently, there is no evidence that recovered patients can be reinfected with SARS-CoV-2.
As the pandemic continues, long-term monitoring of immune activity and reinfection status is needed.
Clinical Diagnosis Are there tools to diagnose infected individuals? When during infection are they effective? .................... 9
Diagnosis of COVID-19 is based on symptoms consistent with COVID-19, PCR-based testing of active cases, and/or the
presence of SARS-CoV-2 antibodies in individuals. Confirmed cases are still underreported.
234
Testing is available to
individuals with or without a doctors referral based on state and local guidelines.
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEA
RED FOR PUBLIC RELEASE 2
Validated serological (antibody) assays are being used to help determine who has been exposed to SARS-CoV-2. Serological
evidence of exposure does not indicate immunity.
In general, PCR tests appear to be sensitive and specific, though confirmation via chest CT is recommended. The sensitivity
and specificity of serological testing methods is variable.
Medical Treatments Are there effective treatments?...........................................................................................................10
Treatment for COVID-19 is primarily supportive care,
220, 381
and no single standard of care exists. Drug trials are ongoing.
Remdesivir shows promise for reducing symptom duration
45
and mortality
205
in humans.
Hydroxychloroquine is associated with risk of cardiac arrhythmias and provides limited to no clinical benefit.
120
Dexamethasone may significantly reduce mortality in severely ill and ventilated patients.
Other pharmaceutical interventions are being investigated.
Additional information on treatment efficacy is required, particularly from large randomized clinical trials.
Vaccines Are there effective vaccines?.................................................................................................................................11
Work is ongoing to develop and produce a SARS-CoV-2 vaccine (e.g., Operation Warp Speed).
42, 225, 228-230, 421
Early results are
being released, but evidence should be considered preliminary until larger trials are completed.
Published results from randomized clinical trials (Phase I III) are needed.
Non-pharmaceutical Interventions Are public health control measures effective at reducing spread? .................................12
Broad-scale control measures such as stay-at-home orders are effective at reducing transmission.
Research is needed to help plan for easing of restrictions. Testing is critical, and synchronized interventions may help.
As different US states have implemented differing control measures at various times, a comprehensive analysis of social
distancing efficacy has not yet been conducted.
Environmental Stability How long does the agent live in the environment? .........................................................................13
SARS-CoV-2 can persist on surfaces for at least 3 days and on the surface of a surgical mask for up to 7 days depending on
conditions. If aerosolized intentionally, SARS-CoV-2 is stable for at least several hours. The seasonality of COVID-19
transmission is unknown. SARS-CoV-2 on surfaces is inactivated rapidly with sunlight.
Additional testing on SARS-CoV-2, as opposed to surrogate viruses, is needed to support initial estimates of stability. Tests
quantifying infectivity, rather than the presence of viral RNA, are needed.
Decontamination What are effective methods to kill the agent in the environment? ..........................................................14
Soap and water, as well as common alcohol and chlorine-based cleaners, hand sanitizers, and disinfectants are effective at
inactivating SARS-CoV-2 on hands and surfaces.
Additional decontamination studies, particularly with regard to PPE and other items in short supply, are needed.
PPE What PPE is effective, and who should be using it? .......................................................................................................15
The effectiveness of PPE for SARS-CoV-2 is currently unknown, and data from other related coronaviruses are used for
guidance. Healthcare workers are at high risk of acquiring COVID-19, even with recommended PPE.
Most PPE recommendations have not been made on SARS-CoV-2 data, and comparative efficacy of different PPE for
different tasks (e.g., intubation) is unknown. Identification of efficacious PPE for healthcare workers is critical due to their
high rates of infection.
Forensics Natural vs intentional use? Tests to be used for attribution. ................................................................................16
All current evidence supports the natural emergence of SARS-CoV-2 via a bat and possible intermediate mammal species.
Identifying the intermediate species between bats and humans would aid in reducing potential spillover from a natural
source. Wide sampling of bats, other wild animals, and humans is needed to address the origin of SARS-CoV-2.
Genomics How does the disease agent compare to previous strains? ..................................................................................17
Current evidence suggests that SARS-CoV-2 accumulates substitutions and mutations at a similar rate as other
coronaviruses. Mutations and deletions in specific portions of the SARS-CoV-2 genome have not been linked to any changes
in transmission or disease severity, though modeling work is attempting to identify possible changes.
Research linking genetic changes to differences in phenotype (e.g., transmissibility, virulence, progression in patients) is
needed.
Forecasting What forecasting models and methods exist? ...................................................................................................18
Forecasts differ in how they handle public health interventions such as shelter-in-place orders and tracking how methods
change in the near future will be important for understanding limitations going forward.
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEA
RED FOR PUBLIC RELEASE 3
Infectious Dose How much agent will make a healthy individual ill?
What do we know?
The human infectious dose of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unknown by all exposure
routes. Studies from other animal models are used as surrogates for humans. Based on primate models, the inhalation
median infectious dose (ID
50
) in humans is likely less than 10,000 PFU, and possibly less than 1,000 PFU.
Non-human primates
A total dose of approximately 700,000 plaque-forming units (PFU) of the novel coronavirus SARS-CoV-2 infected
cynomolgus macaques via combination intranasal and intratracheal exposure (10
6
TCID
50
total dose).
490
Macaques did not
exhibit clinical symptoms, but shed virus from the nose and throat.
490
Rhesus and cynomolgus macaques showed mild to moderate clinical infections at doses of 4.75x10
6
PFU (SARS-CoV-2
delivered through several routes), while common marmosets developed mild infections when exposed to 1.0x10
6
PFU
intranasally.
360
Rhesus macaques are effectively infected with SARS-CoV-2 via the ocular conjunctival and intratracheal route at a dose of
approximately 700,000 PFU (10
6
TCID
50
).
147
Rhesus macaques infected with 2,600,000 TCID
50
of SARS-CoV-2 by the
intranasal, intratracheal, oral and ocular routes combined recapitulate moderate human disease.
415
African green monkeys replicate aspects of human disease, including severe pathological symptoms (exposed to 500,000
PFU via intranasal and intratracheal routes),
626
mild clinical symptoms (aerosol exposures between 5,000 and 16,000
PFU),
232
and acute respiratory distress syndrome (ARDS), with small particle aerosol exposure doses as low as 2,000 PFU.
56
Aerosol exposure of three primate species (African green monkeys, cynomolgus macaques, and rhesus macaques) via a
Collison nebulizer resulted in mild clinical disease in all animals with doses between 28,700 and 48,600 PFU.
276
Rodents
Golden Syrian hamsters exposed to 80,000 TCID
50
(~56,000 PFU) via the intranasal route developed clinical symptoms
reminiscent of mild human infections (all hamsters infected).
533
In a separate study, immunosuppressed Golden Syrian
hamsters showed severe clinical symptoms (including death) after exposure to 100-10,000 PFU via intranasal challenge.
64
Golden Syrian hamsters infected with 100,000 PFU intranasally exhibited mild clinical symptoms and developed
neutralizing antibodies,
100
and were also capable of infecting individuals in separate cages. In another study, older
hamsters had more severe symptoms and developed fewer neutralizing antibodies than younger hamsters.
435
Mice genetically modified to express the human ACE2 receptor (transgenic hACE2 mice) were inoculated intranasally with
100,000 TCID
50
(~70,000 PFU), and all mice developed pathological symptoms consistent with COVID-19.
39
Tr
ansgenic (hACE2) mice became infected after timed aerosol exposure (36 TCID
50
/minute) to between 900 and 1080
TCID
50
(~630-756 PFU). All mice (4/4) exposed for 25-30 minutes became infected, while no mice (0/8) became infected
after exposure for 0-20 minutes (up to 720 TCID
50
, ~504 PFU).
40
Key methodological details (e.g., particle size,
quantification of actual aerosol dose) are missing from the study’s report.
Transgenic (hACE2) mice exposed intranasally to 400,000 PFU of SARS-CoV-2 develop typical human symptoms.
553
Other animal models
Ferrets infected with 316,000 TCID
50
291
or 600,000 TCID
50
481
of SARS-CoV-2 by the intranasal route show similar symptoms
to human disease.
291, 481
Uninfected ferrets in direct contact with infected ferrets test positive and show disease as early
as 2 days post-contact.
291
In one study, direct contact was required to transfer infection between ferrets,
291
however,
transmission without direct contact was found in another study.
481
In a ferret study, 1 in 6 individuals exposed to 10
2
PFU via the intranasal route became infected, while 12 out of 12
individuals exposed to >10
4
PFU became infected.
501
Do
mestic cats exposed to 100,000 PFU of SARS-CoV-2 via the intranasal route developed severe pathological symptoms
including lesions in the nose, throat, and lungs.
530
In a separate study, infected cats showed no clinical signs, but were able
to shed virus and transmit to other cats.
59
Related Coronaviruses
The infectious dose for severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) in mice is estimated to be between
67-540 PFU (average 240 PFU, intranasal route).
142, 144
Genetically modified mice expressing DPP4 exposed intranasally to doses of Middle East respiratory syndrome
coronavirus (MERS-CoV) between 100 and 500,000 PFU show signs of infection. Infection with higher doses result in
severe syndromes.
15, 125, 330, 670
What do we need to know?
Identifying the infectious dose for humans by the various routes through which we become infected is critical to the
effective development of computational models to predict risk, develop diagnostics and countermeasures, and effective
decontamination strategies. Animal studies are a plausible surrogate.
Human infectious dose by aerosol, surface contact (fomite), fecal-oral routes, and other potential routes of exposure
Most appropriate animal model(s) to estimate the human infectious dose for SARS-CoV-2
Does exposure dose determine disease severity?
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 4
Transmissibility How does it spread from one host to another? How easily is it spread?
What do we know?
SARS-CoV-2 is passed easily between humans, likely through close contact with relatively large droplets and possibly
through smaller aerosolized particles.
As of 8/4/2020, pandemic COVID-19 has caused at least 18,317,520 infections and 694,713 deaths
269
in 188 countries and
territories.
88, 520, 616
There are 4,718,249 confirmed COVID-19 cases across all 50 US states, with 155,478 deaths.
269
Initial high-quality estimates of human transmissibility (R
0
) range from 2.2 to 3.1,
376, 445, 486, 634, 669
though recent estimates
suggest that early transmission rates were higher.
506
Transmission rates can vary substantially among neighboring
populations.
209, 597
The majority of new infections come from relatively few infectious individuals.
12, 167
SARS-CoV-2 spreads through close contact and droplet transmission,
94
with fomite transmission
272
and aerosol
transmission likely.
22, 65, 219, 408
On 7/9/2020, the WHO acknowledged that aerosol transmission is plausible, and could not
be ruled out in all cases.
618
Both aerosolized viral RNA
222, 353
and infectious virus have been found in patient rooms.
508
Modeling from the Diamond Princess Cruise Ship outbreak suggests that long-distance aerosol transmission (>2 m) was
more important than large droplet or fomite transmission, though results were highly dependent on assumptions
regarding the infectious dose in the upper vs. lower respiratory tract.
35
SARS-CoV-2 replicates in the upper respiratory tract,
245
and infectious virus is detectable in throat and lung tissue for at
least 8 days.
621
Respiratory fluids from severely ill patients contained higher viral RNA loads than respiratory fluids from
mildly ill patients,
673
but similar viral RNA loads have been found in asymptomatic and symptomatic individuals.
319
Children <5 years old have at least as muchand possibly much moreviral RNA in their upper respiratory tract as
children > 5 years old and adults.
238
Selection bias is a possible concern, though, as only symptomatic children were
tested, and younger children may have been symptomatic because of their high viral loads.
In a Georgia summer camp, 260 of 344 tested attendees (campers and staff) tested positive for SARS-CoV-2 RNA, despite
all attendees having provided evidence of negative diagnostic tests within twelve days prior to attendance.
555
Children
below 10 had the highest rates of SARS-CoV-2 positivity, which decreased with increasing age.
555
In a separate study, older
children (>10 years old) transmitted SARS-CoV-2 as frequently as adults, while younger children (<10 years old)
transmitted infection less often.
447
These estimates, however, were generated during school closures, and may
underestimate the risk of infection from school-age children.
SARS-CoV-2 may be spread by conversation and exhalation
8, 328, 509, 544
in indoor areas such as restaurants.
338
Clusters are
often associated with large gatherings indoors,
321, 446
including bars, restaurants, and music festivals.
656
Experimentally infected ferrets were able to transmit SARS-CoV-2 to other ferrets through the air (ferrets in an adjacent
enclosure, separated by 10 cm).
482
Similar results have been documented in transgenic mice.
40
Vertical transmission (mother to infant) has been confirmed
583
but appears rare.
107, 112, 115, 518, 563, 646, 652
SARS-CoV-2 RNA has been found in semen from both clinically symptomatic and recovered cases,
329
but the potential for
sexual transmission is unknown. Infectious SARS-CoV-2 has also been cultured from patient feces
639
and urine.
551
Individuals can transmit SARS-CoV-2 to others before they have symptoms.
Individuals may be infectious for 1-3 days prior to symptom onset.
30, 602
Pre-symptomatic
57, 298, 543, 550, 643, 672
or
asymptomatic
38, 251, 365
patients can transmit SARS-CoV-2.
356
At least 12% of all cases are estimated to be due to
asymptomatic transmission.
159
Between 23-56% of infections may be caused by pre-symptomatic transmission.
82, 237, 350
Individuals are most infectious before symptoms begin and within 5 days of symptom onset,
114
and pre-symptomatic
individuals contribute to environmental contamination.
270
A
ttack rates of the virus are higher within households than casual contacts.
69, 527
The attack rate ranges from 11%,
50
16%,
334
and 38%
492
of household members, with rates increasing with age.
492
The attack rate for children is low in
households with an adult COVID-19 case.
541, 657
Individuals transmit infection to household members before they exhibit
symptoms at least as often as they do after symptoms develop.
273
Transmission rates are high in confined areas .
504
Undetected cases play a major role in transmission, and most cases are not reported.
661
Models suggest up to 86% of early COVID-19 cases in China were undetected, and these infections were the source for
79% of reported cases.
333
Models estimate that the true number of cases may be approximately 11 times greater than the
reported number of cases in the UK,
648
and 5 to 10 times greater than the reported number of cases in the US.
274, 500, 534
Individuals who have recovered clinically, but test positive, appear unable to transmit COVID-19.
285
What do we need to know?
The relative contribution of different routes of transmission, such as close contact and droplet transmission versus
aerosol transmission and contaminated objects and surfaces (fomites), is unknown and requires additional research.
Is sexual transmission possible?
Is it possible to determine the route by which someone became infected by the clinical presentation or progression of
disease?
How infectious are young children compared to adults?
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 5
Host Range How many species does it infect? Can it transfer from species to species?
What do we know?
SARS-CoV-2 is closely related to other coronaviruses circulating in bats in Southeast Asia. Previous coronaviruses have
passed through an intermediate mammal host before infecting humans, but the presence or identity of the SARS-CoV-2
intermediate host is unknown. Current evidence suggests a direct jump from bats to humans is plausible.
58
Early genomic analysis indicates similarity to SARS-CoV-1,
677
with a suggested bat origin.
126, 677
Positive samples from the South China Seafood Market strongly suggests a wildlife source,
96
though it is possible that the
virus was circulating in humans before the disease was associated with the seafood market.
43, 127, 641, 653
Analysis of SARS-CoV-2 genomes suggests that a non-bat intermediate species is responsible for the beginning of the
outbreak.
489
The identity of the intermediate host remains unknown.
337, 344, 346
Viruses similar to SARS-CoV-2 were present in pangolin samples collected several years ago,
312
and pangolins positive for
coronaviruses related to SARS-CoV-2 exhibited clinical symptoms such as cough and shortness of breath.
336
Additionally,
there is evidence of vertical transmission in pangolins, suggesting circulation in natural populations.
336
However, a survey of 334 pangolins did not identify coronavirus nucleic acid in ‘upstream’ market chain samples,
suggesting that positive samples from pangolins may be the result of exposure to infected humans, wildlife or other
animals within the wildlife trade network. These data suggest that pangolins are incidental hosts of coronaviruses.
322
Additional research is needed to identify whether pangolins are a natural host of SARS-COV-2-related coronaviruses.
SARS-CoV-2 uses the same receptor for cell entry as the SARS-CoV-1 coronavirus that circulated in 2002/2003.
Experiments show that SARS-CoV-2 Spike (S) receptor-binding domain binds the human cell receptor (ACE2) stronger than
SARS-CoV-1,
629
potentially explaining its high transmissibility. The same work suggests that differences between SARS-
CoV-2 and SARS-CoV-1 Spike proteins may limit the therapeutic ability of SARS antibody treatments.
629
Modeling of SARS-CoV-2 Spike and ACE2 proteins suggests that SARS-CoV-2 can bind and infect human, bat, civet,
monkey and swine cells.
587
Host range predictions based on structural modeling, however, are difficult,
194
and additional
animal studies are needed to better define the host range.
In vitro experiments suggest a broad host range for SARS-CoV-2, with more than 44 potential animal hosts, based on viral
binding to species-specific ACE2 orthologs.
351
The host range is predicted to be limited primarily to mammals.
Genetic and protein analysis of primates suggests that African and Asian primates are likely more susceptible to SARS-
CoV-2, while South and Central American primates are likely less susceptible.
392
Identifying the SARS-CoV-2 host range is
important for identifying animal reservoirs.
Changes in proteolytic cleavage of the Spike protein can also affect cell entry and animal host range, in addition to
receptor binding.
394
To date, ferrets, mink, hamsters, cats, deer mice, and primates have been shown to be susceptible to SARS-CoV-2
infection. It is unknown whether these animals can transmit infection to humans.
Animal model studies suggest that Golden Syrian hamsters, primates, and ferrets may be susceptible to infection.
100, 291
In
the Netherlands, farmed mink developed breathing and gastrointestinal issues, which was diagnosed as SARS-CoV-2
infection.
1
It is thought that an infected mink has transmitted SARS-CoV-2 to a human.
307
Golden Syrian hamsters are able
to infect other hamsters via direct contact and close quarters aerosol transmission.
533
Domestic cats are susceptible to infection with SARS-CoV-2 (100,000-520,000 PFU via the intranasal route
530
or a
combination of routes
224
), and can transmit the virus to other cats via droplet or short-distance aerosol.
530
Dogs exposed
to SARS-CoV-2 produced anti-SARS-CoV-2 antibodies
59
but exhibited no clinical symptoms.
530, 538
Deer mice can be experimentally infected with SARS-CoV-2 via intranasal exposure to 10
5
TCID
50
of virus, and are able to
transmit the virus to uninfected deer mice through direct contact.
215
Their capacity as a reservoir species is unknown.
Wild cats (tigers)
601
can be infected with SARS-CoV-2, although their ability to spread to humans is unknown.
377, 666
Two
cases of SARS-CoV-2 infection have been confirmed in pet domestic cats.
87
Ducks, chickens, and pigs remained uninfected after experimental SARS-CoV-2 exposure (30,000 CFU for ducks and
chickens, 100,000 PFU for pigs, all via intranasal route).
530
There is currently no evidence that SARS-CoV-2 infects
livestock.
258
Pigs and chickens were not susceptible to SARS-CoV-2 infection when exposed to an intranasal dose of 10
5
TCID
50
(~70,000 PFU).
515
Fruit bats and ferrets were susceptible to this same exposure.
515
Chicken, turkey, duck, quail, and geese were not susceptible to SARS-CoV-2 after experimental exposures.
549
What do we need to know?
The best animal model for replicating human infection by various routes is still unidentified.
What is the intermediate host(s), if any?
Can infected animals transmit to humans (e.g., pet cats to humans)?
Can SARS-CoV-2 circulate in animal reservoir populations, potentially leading to future spillover events?
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 6
Incubation Period How long after infection do symptoms appear? Are people infectious during this time?
What do we know?
The majority of individuals develop symptoms within 14 days of exposure. For most people, it takes at least 2 days to
develop symptoms, and on average symptoms develop 5 days after exposure. Incubating individuals can transmit disease
for several days before symptom onset. Some individuals never develop symptoms but can still transmit disease.
The incubation period of COVID-19 is between 5
318
and 6
603
days.
647
Fewer than 2.5% of infected individuals show
symptoms sooner than 2 days after exposure.
318
There is evidence that younger (<14) and older (>75) individuals have longer COVID-19 incubation periods, creating a U-
shaped relationship between incubation period length and patient age.
299
Individuals can test positive for COVID-19 even if they lack clinical symptoms.
38, 99, 220, 562, 672
Individuals can be infectious while asymptomatic,
94, 494, 562, 672
and asymptomatic and pre-symptomatic individuals have
similar amounts of virus in the nose and throat compared to symptomatic patients.
30, 290, 681
Peak infectiousness may be during the incubation period, one day before symptoms develop.
237
Infectious virus has been
cultured in patients up to 6 days before the development of symptoms.
30
Infectious period is unknown, but possibly up to 10-14 days.
6, 333, 520
Asymptomatic individuals are estimated to be infectious for a median of 9.5 days.
249
On average, there are approximately 4
159
to 7.5
332
days between symptom onset in successive cases of a single
transmission chain (i.e., the serial interval). Based on data from 339 transmission chains in China, the mean serial interval
is between 4.6
647
and 5.29 days.
158
The serial interval of COVID-19 has declined substantially over time as a result of increased case isolation,
18
meaning
individuals tend to transmit virus for less time.
Children are estimated to shed virus for 15 days on average, with asymptomatic individuals shedding virus for less time
(11 days) than symptomatic individuals (17 days).
362
Most hospitalized individuals are admitted within 8-14 days of symptom onset.
675
Asymptomatic and mildly ill patients who test positive for SARS-CoV-2 take less time to test negative than severely ill
patients.
324
Patients infected by asymptomatic or young (<20 years old) individuals may take longer to develop symptoms than those
infected by other groups of individuals.
603
Viral RNA loads in the upper respiratory tract tend to peak within a few days of symptom onset and become undetectable
approximately two weeks after symptoms begin.
585
The duration of the infectious period is unknown,
585
though patients
can test positive for SARS-CoV-2 viral RNA for extended periods of time, particularly in stool samples.
What do we need to know?
While the incubation period is well-characterized overall, the duration of infectivity is poorly understood in different
patient populations (e.g., age, disease severity).
What is the average infectious period during which individuals can transmit the disease?
How infectious are asymptomatic and pre-symptomatic individuals compared to mildly, moderately, or severely ill
patients?
How soon can asymptomatic patients transmit infection after exposure?
Does the incubation period correlate with disease severity or exposure dose?
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 7
Clinical Presentation What are the signs and symptoms of an infected person?
What do we know?
Most symptomatic cases are mild, but severe disease can be found in any age group.
4
Older individuals and those with
underlying conditions are at higher risk of serious illness and death.
Most symptomatic COVID-19 cases are mild (81%, n=44,000 cases).
562, 619
Initial COVID-19 symptoms include fever (87.9%
overall, but only 44-52% present with fever initially),
27, 220
cough (67.7%),
220
fatigue, shortness of breath, headache, and
reduced lymphocyte count.
95, 103, 250
Chills, muscle pain, headache, sore throat, and loss of taste or smell
453, 645
are also
possible COVID-19 symptoms.
95
GI symptoms are present in approximately 9% of patients,
491
but may be more common in
severe cases.
282
Neurological symptoms such as agitation,
239
loss of coordination,
378
and stroke
579
may present with
COVID-19,
451
may be more common in severe cases,
134
and neurological involvement (e.g., encephalitis) can be seen in
brain tissue on autopsy.
584
Ocular issues
636
and skin lesions
195
may also be symptoms of COVID-19.
60
There are concerns
that COVID-19 can lead to new-onset diabetes.
496
Complications include acute respiratory distress syndrome (ARDS, 17-29% of hospitalized patients, leading to death in 4-
15% of cases),
111, 250, 589
pneumonia,
440
cardiac injury (20%),
531
secondary infection, kidney damage,
28, 547
arrhythmia,
sepsis, stroke (1.6% of hospitalized patients),
396
and shock.
220, 250, 589, 675
Most deaths are caused by respiratory failure or
respiratory failure combined with heart damage.
495
Half of hospitalized COVID-19 patients show abnormal heart scans.
161
Approximately 15% of hospitalized patients are classified as severe,
220, 562
and approximately 5% of patients are admitted
to the ICU.
220, 562
Patient deterioration can be rapid.
214
The survival rate of patients requiring mechanical ventilation varies
widely (e.g., 35%,
257
70%,
33
75.5%
483
). Higher SARS-CoV-2 viral RNA load on admission (measured by RT-PCR cycle
threshold values) have been associated with greater risk of intubation and death.
370
Approximately 42% of ICU patients
die from COVID-19, though the rate is variable across studies.
29
COVID-19 symptoms like fatigue and shortness of breath commonly persist for weeks
561
to months
80
after initial onset.
US deaths due to COVID-19 have been underreported by up to 35% (March April).
625
In New York City, up to 5,293 (22%)
of period-specific excess deaths are unexplained and could be related to the pandemic.
430
Recent evidence suggests that SARS-CoV-2 may attack blood vessels in the lung, leading to clotting complications and
ARDS.
11, 580
Clotting may be associated with severely ill COVID-19 patients
293
and those with ARDS,
134
and affects multiple
human organ systems.
474
COVID-19 patients should be monitored for possible thrombosis.
327
In autopsies of several
COVID-19 patients, there was evidence of diffuse alveolar damage (DAD)
512
and increased blood clotting.
514
Approximately 40% of cases are asymptomatic.
433
Between 16% and 58% of patients are asymptomatic throughout the course of their infection.
71, 319, 324, 404, 423, 556, 568
The case fatality rate is unknown, but individuals >60 and those with comorbidities are at elevated risk of death.
562, 675
Cardiovascular disease, obesity,
13, 459
hypertension,
664
diabetes, and respiratory conditions all increase the CFR.
562, 675
Hypertension and obesity are common in the US
197
and contribute to mortality.
28, 443
The CFR increases with age (data from China and Italy): 0-9 years < 0.1%, 10-19 years = 0-0.2%, 20-29 years = 0-0.2%, 30-
39 years = 0.2-0.3%, 40-49 years = 0.4%, 50-59 years = 1.0-1.3%, 60-69 years = 3.5-3.6%, 70-79 years = 8.0-12.8%, >80
years = 14.8-20.2%.
431
Minority populations are disproportionately affected by COVID-19.
B
lack, Asian, and Minority Ethnic (BAME) populations acquire SARS-CoV-2 infection at higher rates than other groups
189, 439
and are hospitalized
197, 464
and die disproportionately.
241, 400
Hospitalization rates in Native American, Hispanic, and Black
populations are 4-5 times higher than those in non-Hispanic white populations.
90
In the US, Hispanic and Black patients
tend to die at younger ages than white patients.
628
Pregnant women develop severe symptoms at similar
110, 280, 659
or slightly higher rates than the general population.
165
Severe symptoms in pregnant women may be associated with underlying conditions such as obesity.
354
There is some
evidence that rates of stillbirth and preterm delivery have increased during the COVID-19 pandemic,
393
though these
instances have not been conclusively linked to maternal COVID-19 infection.
289
More work is needed.
Children are susceptible to COVID-19,
155
though generally show milder
105, 361
or no symptoms.
Between 21-28% of children (<19 years old) may be asymptomatic.
361, 448, 466
Most symptomatic children present with mild
or moderate symptoms,
213, 448
with few exhibiting severe or clinical illness.
633
Severe symptoms in children are possible
349
and more likely in those with complex medical histories
525
or underlying
conditions such as obesity.
658
Infants are susceptible to illness,
156
and infant deaths have been recorded.
67, 361
The WHO
615
and US CDC
268
have issued case definitions for a rare condition in children (termed Pediatric Multi-System
Inflammatory Syndrome)
207
linked to COVID-19 infection.
487
The prevalence of this condition is unknown.
What do we need to know?
Both the duration and prevalence of debilitating symptoms that inhibit an individual’s ability to function are not
understood. The true case-fatality rate is unknown.
How does the asymptomatic fraction vary across age groups?
How does COVID-19 contribute to pregnancy complications?
How long, on average, are affected individuals unable to perform normal jobs and responsibilities?
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 8
Protective Immunity How long does the immune response provide protection from reinfection?
What do we know?
Infected patients show productive immune responses, but the duration of any protection is unknown. Initial evidence
suggests that the neutralizing antibody response does not last more than a few months, though this varies by severity.
In a small comparison series (n=74), both asymptomatic and mildly symptomatic individuals showed reductions in IgG
antibody levels 8 weeks after infection.
356
The half-life of one antibody (IgG) has been estimated at 36 days in COVID-19
patients.
256
The correlation to long-term immunity is unknown.
In a larger study (n=175), most patients developed neutralizing antibodies within 10-15 days after disease onset. Elderly
patients had significantly higher neutralizing antibody titers than younger patients.
631
In a separate study, elderly patients
also showed higher viral loads than younger patients.
566
Approximately half of infected individuals on an aircraft carrier
developed detectable neutralizing antibody responses to SARS-CoV-2.
453
In a study of 285 COVID-19 patients, 100% developed antiviral immunoglobulin-G within 19 days of symptom onset.
355
The
neutralizing ability of these antibodies was not tested.
355
In a smaller in vitro study (n=23 patients), levels of antibodies
(immunoglobulins M and G) were positively correlated with SARS-CoV-2 neutralizing ability.
566
In a smaller study of 44
patients, plasma from 91% demonstrated SARS-CoV-2 neutralizing ability, appearing ~8 days after symptom onset.
554
A small subset of COVID-19 patients in China (8%) did not develop a serological response to infection, though the potential
for reinfection in these patients is unknown.
631
Similarly, between 16.7% (for IgG) and 51.7% (for IgM) of patients in a
separate study did not exhibit any immune response, in terms of production of those two types of antibodies.
558
In a study of 221 COVID-19 patients, levels of two types of antibodies (IgM and IgG) were not associated with the severity
of symptoms.
248
However, in a smaller study, patients with severe disease showed stronger antibody responses than those
with non-severe symptoms.
566
Severely ill individuals develop higher levels of neutralizing antibodies
343
and greater T-cell
response frequencies
521
than mildly symptomatic or asymptomatic individuals.
The early recovery phase of COVID-19 patients is characterized by inflammatory immune response.
607
Two studies identified key components of the adaptive immune system (CD4
+
T cells) in the majority of recovered COVID-
19 patients, and these cells reacted to SARS-CoV-2 Spike protein.
62, 217
These studies also identified Spike protein
responses in CD4
+
T cells of ~30-40% of unexposed patients,
217
suggesting some cross-reactivity between other circulating
human coronaviruses and SARS-CoV-2.
62, 217
Long-lasting T-cell responses have been seen in SARS-CoV-1 patients, and T-
cell cross-reactivity reactivity between other coronaviruses and SARS-CoV-2 suggest additional immune protection.
320
The
strength and duration of any T-cell derived protection is currently unknown.
Children do not appear to be protected from SARS-CoV-2 infection or severe COVID-19 symptoms by historical exposure
to seasonal coronaviruses.
523
Currently, there is no evidence that recovered patients can be reinfected with SARS-CoV-2.
Two studies suggest limited reinfection potential in macaques. In the first, two experimentally infected macaques were
not capable of being reinfected 28 days after their primary infection resolved.
148
In the second, rhesus macaques exposed
to different doses of SARS-CoV-2 via the intranasal and intratracheal routes (10
4
10
6
PFU) developed pathological
infection and were protected upon secondary challenge 35 days after initial exposure.
102
Ferrets infected with 10
2
-10
4
PFU were protected from acute lung injury following secondary challenge with SARS-CoV-2
28 days after initial exposure, but they did exhibit clinical symptoms such as lethargy and ruffled fur.
501
Cats exposed to
SARS-CoV-2 after initial recovery did not shed virus, suggesting some protective effect of primary infection.
59
According to the WHO, there is no evidence of re-infection with SARS-CoV-2 after recovery.
317
Patients can test positive via PCR for up to 37 days after symptoms appear,
675
and after recovery and hospital discharge.
313
The strength and duration of any immunity after initial COVID-19 infection is unknown.
19, 612
In a small study (n=65), 95% of patients developed neutralizing antibodies within 8 days of symptom onset,
522
but
neutralizing antibody titers declined substantially when assayed after 60 days.
522
Individuals with more severe infections
developed higher neutralizing antibody levels that persisted longer than those with asymptomatic or mild infections.
522
Protective antibody immunity may depend on the severity of initial infection, and may not persist for more than a few
months, which is consistent with observations in other human coronaviruses.
In a 35-year study of 10 men, immunity to seasonal coronaviruses waned after one year.
162
Reinfection was observed
between one and three years after initial infection.
162
Previous studies on coronavirus immunity suggest that neutralizing antibodies may wane after several years.
74, 635
What do we need to know?
As the pandemic continues, long-term monitoring of immune activity and reinfection status is needed.
How long does the immune response last? Is there evidence of waning immunity?
Can humans become reinfected, or are reports of reinfection vestiges from initial infection?
How do different components of the immune response contribute to long-term protection?
How does initial disease severity affect the type, magnitude, and timing of any protective immune response?
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 9
Clinical Diagnosis Are there tools to diagnose infected individuals? When during infection are they
effective?
What do we know?
Diagnosis of COVID-19 is based on symptoms consistent with COVID-19, PCR-based testing of active cases, and/or the
presence of SARS-CoV-2 antibodies in individuals. Confirmed cases are still underreported.
234
Testing is available to
individuals with or without a doctors referral based on state and local guidelines.
The US CDC has expanded testing criteria, and recommends testing symptomatic individuals, asymptomatic individuals
with known exposures, and those necessary for public health surveillance.
92
PCR protocols and primers have been widely shared internationally.
85, 129, 332, 529, 611, 617
A combination of pharyngeal (throat) RT-PCR and chest tomography is recommended,
479
particularly when results from
either test are inconclusive.
303
A single throat swab detects 78.2% of infections, and duplicate tests identify 86.2% of
infections.
479
PCR tests using saliva are at least as effective as those using nasopharyngeal swabs.
108, 638
Evaluation of seven
RT-PCR diagnostic test kits in China showed high overall accuracy, but some variability among test kits.
588
Nasal and pharyngeal swabs may be less effective as diagnostic specimens than sputum and bronchoalveolar lavage
fluid,
594
although evidence is mixed.
621
Combination RT-PCR and serology (antibody) testing may increase the ability to
diagnose patients with mild symptoms, or identify patients at higher risk of severe disease.
671
Assays targeting antibodies
against the nucleocapsid protein (N) instead of the Spike protein (S) of SARS-CoV-2 may improve detection.
68
The timing of diagnostic PCR tests impacts results. The false-negative rate for RT-PCR tests is lowest between 7 and 9 days
after exposure, and PCR tests are more likely to give false-negative results before symptoms begin (within 4 days of
exposure) and more than 14 days after exposure.
310
The role of temporal changes in immunological response and variation
of diagnostic test results based on symptom severity warrants additional study.
300
Diagnostic test results from at-home, mid-nasal swabs were comparable to clinician-conducted nasopharyngeal swabs,
though false-negatives were observed in individuals with low viral titer.
382
Asymptomatic individuals have a higher likelihood of testing negative for a specific antibody (IgG) compared to
symptomatic patients, potentially due to lower viral loads (as measured by RT-PCR).
606
The FDA issued an Emergency Use Authorization for an antigen-based diagnostic assay, limited to use in certified
laboratories (clinical laboratory improvement amendments, CLIA).
172
The FDA released an Emergency Use Authorization enabling laboratories to develop and use tests in-house for patient
diagnosis.
177
Tests from the US CDC are available to states.
85, 94
Rapid test kits have been produced by universities and
industry.
48, 54, 137, 175, 582
Home tests are being developed, though they cannot be used for diagnosis and have not been
approved by the FDA.
416-417, 444
The US CDC is developing serological tests to assess SARS-CoV-2 exposure prevalence.
278
The CRISPR-Cas12a system is being used to develop fluorescence-based COVID-19 diagnostic tests.
253
Immunological indicators
36, 166, 236, 252, 461, 552, 590
and fasting blood glucose levels
593
may help differentiate between severe
and non-severe cases, and decision-support tools for diagnosing severe infections have been developed.
632
Individuals who test positive again after hospital discharge were more likely to have had short hospital stays, be younger
than 18, and have had mild or moderate COVID-19 symptoms.
655
Validated serological (antibody) assays are being used to help determine who has been exposed to SARS-CoV-2.
Serological evidence of exposure does not indicate immunity.
Repeated serological testing is necessary to identify asymptomatic
463
and other undetected patients.
507
Exclusively testing
symptomatic healthcare workers is likely to exclude a large fraction of COVID-19 positive personnel.
546
Research has shown high variability in the ability of tests (ELISA
429
and lateral flow assays) by different manufacturers to
accurately detect positive and negative cases (sensitivity and specificity, respectively).
316, 608
The FDA has excluded several
dozen serological diagnostic assays based on failure to conform to updated regulatory requirements.
174
Researchers have
designed a standardized ELISA procedure for SARS-CoV-2 serology samples.
294
Meta-analysis suggests that lateral flow assays (LFIA) are less accurate than ELISA or chemiluminescent methods (CLIA),
but that the target of serological studies (e.g., IgG or IgM) does not affect accuracy.
340
Most reported serological studies
suffer from bias related to selected patients, limiting their applicability to general populations.
340
The false-positive rate of serological assays may account for a substantial portion of reported exposures,
46
particularly if
the true proportion of positive patients is low.
What do we need to know?
In general, PCR tests appear to be sensitive and specific, though confirmation via chest CT is recommended. The
sensitivity and specificity of serological testing methods is variable.
How many serological tests need to be done to obtain an accurate picture of underlying exposure?
What fraction of exposed individuals fail to develop antibody responses that are the target of serological assays?
What is the relationship between disease severity and the timing of positive serological assays?
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 10
Medical Treatments Are there effective treatments?
What do we know?
Treatment for COVID-19 is primarily supportive care,
220, 381
and no single standard of care exists. Drug trials are ongoing.
Remdesivir shows promise for reducing symptom duration
45
and mortality
205
in humans.
Remdesivir can reduce the duration of symptoms in infected individuals, from 15 days to 11 days on average (compared to
controls).
45
Remdesivir received an Emergency Use Authorization from FDA
422
and is recommended for use in the EU.
620
A press release reports that remdesivir reduced 14-day mortality in COVID-19 patients across racial and ethnic groups
when compared to standard of care alone, though concerns exist regarding the appropriate control group.
205
A randomized clinical trial of remdesivir found no significant clinical benefits (n=237 patients), but the trial ended early.
599
Hydroxychloroquine is associated with risk of cardiac arrhythmias and provides limited to no clinical benefit.
120
Hydroxychloroquine does not benefit mild-moderate COVID-19 cases,
84
was associated with adverse cardiac events in
severely ill patients,
287
and showed no efficacy as treatment or pre-exposure prophylaxis in non-human primates.
374
Several large clinical trials have stopped administering hydroxychloroquine due to lack of efficacy.
231, 242, 418
Other existing
studies have found no benefit of hydroxychloroquine (with or without azithromycin)
20, 104, 109, 200, 244, 296, 369, 371, 540, 559
as well
as cardiac side effects
47, 121, 203, 266, 372, 395, 511
and elevated risk of mortality.
369, 488
Hydroxychloroquine does not protect
individuals from infection either before
201
or after exposure.
61, 402
The FDA revoked its EUA for the drug on 6/15/20.
171
Initial results purporting benefits of hydroxychloroquine and azithromycin
199
have been called into question. One small
clinical trial (n=62) suggests that hydroxychloroquine can reduce recovery time compared to control group,
113
but lacks key
methodological details.
113
A small retrospective study (n=48) found benefits to hydroxychloroquine, though details on
patient study population selection were limited.
651
A larger retrospective study (n=2,541) found that hydroxychloroquine
reduced mortality.
31
However, concerns still exist over the patient selection protocol and the time-course of the study.
323
Dexamethasone may significantly reduce mortality in severely ill and ventilated patients.
Dexamethasone is associated with substantial reductions in mortality for patients receiving mechanical ventilation, and
smaller benefits for those receiving supplemental oxygen.
243
Dexamethasone did not reduce mortality in patients who did
not need oxygen or mechanical ventilation.
243
Other pharmaceutical interventions are being investigated.
Several studies of methylprednisolone suggest clinical benefits in severely ill patients (e.g., reduction in ventilator use,
mortality), but have not been tested separately from other standard-of-care treatments.
130, 375, 497, 505, 510
Providing anti-
inflammatory treatments in the first few days of hospital admission may be beneficial.
399
Other corticosteroids are also
being studied and show some evidence of clinical improvement (ventilator-free days),
122
though the benefits of
glucocorticoids may depend heavily on patient inflammation (beneficial if high, detrimental if low).
286
There is evidence for efficacy of several interferon-based treatments, including interferon beta-1b,
255
interferon beta-1a,
141
and interferon alpha-2b.
456
In these studies, interferons were generally administered with other treatments. A press
release suggests that an inhaled interferon beta reduced the need for mechanical ventilation.
462
Observational studies have found benefits of tocilizumab
182, 233, 493, 542, 642
in severe COVID-19 patients,
76
and Phase II trial
results show limited reductions in mortality.
458
Tocilizumab efficacy may depend on C-reactive protein levels
192, 380
and may
be more beneficial when administered early.
212, 271, 288, 412
Tocilizumab has been associated with reduced risk of severe
illness
25, 295
and death,
412
but also an increased risk of secondary (non-COVID-19) infection.
221
Many studies of tocilizumab
suffer from non-random patient assignments and the confounding influence of concomitant treatments, despite showing
some clinical benefits.
208, 235, 409, 450, 472, 545, 567, 569
Randomized clinical trials are needed. Other trials have found benefits of
itolizumab
52
and bevacizumab
441
but no consistent benefits from sarilumab.
476
Limited, preliminary evidence supports the efficacy of favipiravir,
106
intravenous immunoglobulin,
78
baricitinib,
75
ivermectin,
470
leflunomide,
247
pidotimod,
571
and colchicine.
513
Lenzilumab, a monoclonal antibody, showed benefits to
oxygenation levels in severely ill patients (n=12).
560
There is no clinical benefit from combination ritonavir/lopinavir.
77, 216,
339
The kinase inhibitor ruxolitinib may help to reduce symptom duration and mortality.
79
The anticoagulant heparin is
being used to mitigate risks of pulmonary embolism.
166
Systemic anticoagulant use was associated with reduced mortality
rates in severely ill patients.
442
Anakinra has showed some evidence of clinical benefit in small observational studies.
83
T
rials are ongoing to evaluate the efficacy of a blood cleaning device used to reduce inflammatory neutrophils.
650
Passive antibody therapy (convalescent serum)
81
is being given to patients,
176
appears safe,
279
and several small trials (<50
patients) suggest benefits from convalescent patient plasma for infected patients.
168, 348, 368, 379, 503, 526, 528
Some trial data
suggest benefits of plasma in terms of reduced hospitalization time,
10
though evidence is mixed.
153, 204, 331
What do we need to know?
Additional information on treatment efficacy is required, particularly from large randomized clinical trials.
Do monoclonal antibodies exhibit any efficacy in human trials?
Do androgen levels in males alter disease severity?
211, 407, 586
Can targeting the papain-like protease of SARS-CoV-2 reduce in vivo replication?
532
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 11
Vaccines Are there effective vaccines?
What do we know?
Work is ongoing to develop and produce a SARS-CoV-2 vaccine (e.g., Operation Warp Speed).
42, 225, 228-230, 421
Early results
are being released, but evidence should be considered preliminary until larger trials are completed.
Phase III Trials (testing for efficacy):
Moderna has begun Phase III trials of its COVID-19 vaccine, which will target 30,000 participants.
406
University of Oxford’s ChAdOx1 candidate (now called AZD1222) has begun Phase II/III human trials.
437
Sinovac will begin Phase III trials of its CoronaVac candidate in healthcare professionals.
535
Sinopharm will begin Phase III trials of its inactivated SARS-CoV-2 vaccine candidate.
41
Phase II Trials (initial testing for efficacy, continued testing for safety):
CanSino’s Ad5-nCoV adenovirus vaccine candidate has undergone Phase II human trials.
341
China has given approval to
vaccinate members of its military with the product.
347
Phase II trial results showed positive immune responses in most
patients, but also indicated that prior infection with circulating adenoviruses may inhibit vaccine efficacy.
678
Sinovac reported no severe adverse events among 600 Phase II participants given their CoronaVac candidate (inactivated
virus), and 90% of patients developed neutralizing antibodies 14 days after administration.
537
Sinopharm reported neutralizing antibody development in all 1,120 participants given its inactivated virus vaccine (two
times, 14 days apart) with no severe adverse events.
342
Inovio has registered for a Phase II trial of their INO-4800 DNA vaccine candidate.
262
Phase I Trials (initial testing for safety):
mRNA vaccines developed by several groups are currently being tested in Phase I trials, including CureVac (candidate is
CVnCoV),
135
the Chinese Academy of Military Sciences (ARCoV),
146
BioNTech and Pfizer (BNT162 program),
460
Moderna
(mRNA-1273),
405
and Arcturus (ARCT-021).
26
Data from a Phase I trial of Moderna’s mRNA-1273 candidate suggest that the
vaccine is well-tolerated by human subjects, and induces an antibody response against SARS-CoV-2.
265
Preliminary Phase
I/II results for BioNTech’s BNT162b1 mRNA candidate show mild side effects in low dose groups, and patients generated
neutralizing antibodies at 21 days post vaccination.
414
Adenovirus-based vaccines from several groups are being tested in Phase I trials, including CanSino (Ad5-nCoV),
679
Johnson and Johnson (Ad.26-COV2-S),
275
the University of Oxford (ChAdOx1, now called AZD1222),
577
and Gamaleya
Research Institute of Epidemiology and Microbiology (Gam-COVID-Vac Lyo).
614
Phase I trial results for the CanSino vaccine
(Ad5-nCoV) showed few severe adverse reactions in humans within 28 days of follow-up and appreciable antibody and T-
cell responses.
679
In Phase I/II trials, the ChAdOx-1 COVID-19 (AZD1222) vaccine showed a tolerable safety profile and
most recipients developed positive T-cell and neutralizing antibody responses.
191
Several groups have developed heat-inactivated vaccine candidates, including the Chinese Academy of Medical
Sciences,
519
the Beijing Institute of Biological Products,
465
the Wuhan Institute of Biological Products,
637
Immunitor LLC (V-
Sars),
390
and Sinovac Biotech (CoronaVac).
536
Sinovac Biotech has reported that their inactivated virus vaccine (CoronaVac)
shows protective effects in rhesus macaques, particularly at high vaccine doses.
196
Several groups are developing recombinant subunit vaccines, including Vaxine Pty (Covax-19),
581
Clover
Biopharmaceuticals (SCB-2019),
389
Novavax (NVX-CoV2373),
385
the Chinese Academy of Sciences (RBD-Dimer),
357
and
Medigen Vaccine Biologics (MVC-COV1901).
391
The University of Queensland has started Phase I trials of its UQ vaccine
candidate, which uses Spike protein subunits.
467
Several groups are testing DNA vaccines in Phase I trials, including Inovio (INO-4800),
261
Genexine (GX-19)
202
and AnGes
(AG0301-COVID19).
24
Results from Inovio’s INO-4800 show no serious adverse side effects and high immunogenicity.
261
Imperial College London is beginning Phase I/II trials of their RNA vaccine candidate, LNP-nCoVsnRNA.
427
Shenzhen Geno-Immune Medical Institute is testing its aAPC
388
and lentiviral (LV-SMENP-DC)
386
vaccines.
Symvivo Corporation (Canada) will begin a Phase I trial of its oral bacTRL-Spike vaccine candidate.
384
A
ivita will begin a Phase Ib/II clinical trial of its DC-ATA candidate, comprised of dendritic cells and SARS-CoV-2 antigens.
387
Medicago will begin the Phase I trials of their vaccine, a plant-derived virus-like-particle candidate.
383
Phase I/II trials are beginning for vaccine candidates from Zydus Cadila (ZyCoV-D, DNA plasmid)
682
and Baharat (Covaxin,
inactivated rabies virus used as carrier for SARS-CoV-2 proteins).
170
Kentucky BioProcessing will begin Phase I/II trials of their KBP-COVID-19 candidate based on a tobacco plant platform.
53
Non-target vaccines
The potential benefits of non-SARS-CoV-2 vaccines, such as Bacillus Calmette-Guerin (BCG), are under investigation.
169, 524
What do we need to know?
Published results from randomized clinical trials (Phase I III) are needed.
Safety and efficacy of vaccine candidates in humans, particularly from Phase III trials
Length of any vaccine-derived immunity
Evidence for vaccine-derived enhancement (immunopotentiation)
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 12
Non-pharmaceutical Interventions Are public health control measures effective at reducing spread?
What do we know?
Broad-scale control measures such as stay-at-home orders are effective at reducing transmission.
Social distancing and other policies are estimated to have reduced COVID-19 spread by 44% in Hong Kong
133
and reduced
spread throughout China,
305, 309, 311, 358, 373, 592
Europe,
198, 284
and the US.
304
Restrictive lockdowns in China are estimated to
have reduced disease transmission within only a few days
680
by reducing contacts.
662
In China, modeling suggests that a
one-day delay in implementing control measures increased the time needed to curtail an outbreak by 2.4 days.
157
In the
US, each day of delay in emergency declarations and school closures was associated with a 5-6% increase in mortality.
649
Modeling demonstrates that multifaceted restrictions and quarantines in China reduced the R
0
of SARS-CoV-2 from
greater than 3 to less than 1 between January 23 and February 5.
438, 663
Other studies identified large reductions in
transmission due to country lockdowns
190
and other social distancing measures,
246
but showed substantial variation.
190, 246
A US county-level model found that shelter-in-place orders (SIPOs) and restaurant and bar closures were associated with
large reductions in exponential growth rate of cases.
131
School closures and cancellation of large gatherings had smaller
effects.
131
Similarly, researchers found that a larger number of public health interventions in place was strongly associated
with lower COVID-19 growth rates in the next week.
281
Individual behaviors such as wearing face coverings and practicing
social distancing have been associated with reduced risk of COVID-19 infection.
453
Mobility
187, 315
and physical contact rates
267
decline after public health control measures are implemented. Mobility
reductions in the US have been associated with significant reductions in COVID-19 case growth.
37
Social distancing and
reductions in both non-essential visits to stores and overall movement distance led to lower transmission rates of SARS-
CoV-2.
411
Travel restrictions delay peak prevalence by only a few days but do not limit epidemic size.
17
A combination of school closures, work restrictions, and other measures are likely required to effectively limit
transmission.
181, 301
School closures alone appear insufficient.
264, 311
Non-pharmaceutical interventions in China did not
reduce transmission equally across all populations.
438
Contact tracing to identify infected individuals reduces the amount of time infectious individuals can transmit disease in a
population.
50
Robust contact tracing and case finding may be needed to control COVID-19 in the US, but requires
additional resources.
600
In South Korea, early implementation of rapid contact tracing, testing, and quarantine was able to
reduce the transmission rate of COVID-19.
550
Contact tracing combined with high levels of testing may limit COVID-19
resurgence once initial social distancing policies are relaxed.
16, 183
Contact tracing is likely to be more effective in
combination with measures such as expanded testing and physical distancing.
308
The effectiveness of social distancing policies depends on income, as higher-income areas were associated with larger
reductions in mobility after stay-at-home orders than lower-income areas.
604
Research is needed to help plan for easing of restrictions. Testing is critical, and synchronized interventions may help.
Relaxing public health interventions is projected to increase cases and deaths.
138, 574
As of 8/4/2020, 15 US states are
experiencing increases in the average daily rate of new confirmed cases, and 26 US states are experiencing increases in
the average daily rate of new COVID-19 deaths (for the prior 14 days).
426
In the US, statistical modeling suggests that early school closures resulted in fewer deaths, though school closures were
often implemented in conjunction with other approaches and independent effects are difficult to assess.
32
Modeling suggests that optimal control policies involve quickly quarantining infected individuals, and that periods of social
distancing or lock-down may be effective in reducing overall exposure from asymptomatic or unconfirmed cases.
570
Testing is critical to balancing public health and economic costs.
570
Rolling interventions, whereby social distancing
measures are put into place every few weeks, may keep healthcare demand below a critical point.
648
Undetected cases,
can lead to elevated risk of re-emergence after restrictions are lifted, highlighting the need for robust testing strategies.
226
Synchronizing public health interventions and lockdowns across US state lines may reduce the total number of
interventions necessary to eliminate transmission as COVID-19 cases continue to resurge.
498
Modeling indicates that COVID-19 is likely to become endemic in the US population, with regular, periodic outbreaks, and
that additional social or physical distancing measures may be required for several years to keep cases below critical care
capacity in absence of a vaccine or effective therapeutic.
292
Results depend on the duration of immunity after exposure.
292
Balancing control measures to maintain R
0
below 1 may be more cost effective than allowing R
0
to increase above 1.
325
Surveys indicate that the majority of Americans were complying with non-pharmaceutical interventions.
136
In the US,
mask use increased after recommendations from the White House Task force and CDC.
185
What do we need to know?
As different US states have implemented differing control measures at various times, a comprehensive analysis of social
distancing efficacy has not yet been conducted.
What are plausible options for relaxing social distancing and other intervention measures without resulting in a resurgence
of COVID-19 cases?
How will broad-scale school re-openings impact disease progression in the US?
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 13
Environmental Stability How long does the agent live in the environment?
What do we know?
SARS-CoV-2 can persist on surfaces for at least 3 days and on the surface of a surgical mask for up to 7 days depending on
conditions. If aerosolized intentionally, SARS-CoV-2 is stable for at least several hours. The seasonality of COVID-19
transmission is unknown. SARS-CoV-2 on surfaces is inactivated rapidly with sunlight.
SARS-CoV-2 Data
In simulated saliva on stainless steel surfaces, SARS-CoV-2 exhibits negligible decay over 60 minutes in darkness, but loses
90% of infectivity every 6.8-12.8 minutes, depending on the intensity of simulated UVB radiation levels.
475
The Department of Homeland Security (DHS) developed a data-based model for SARS-CoV-2 decay on inert surfaces
(stainless steel, ABS plastic and nitrile rubber) at varying temperature and relative humidity. This model estimates virus
decay in the absence of exposure to direct sunlight.
152
SARS-CoV-2 can persist on plastic and metal surfaces between 3 days (21-23°C, 40% RH)
576
and 7 days (22°C, 65% RH).
Infectious virus can be recovered from a surgical mask after 7 days (22°C, 65% RH).
119
At room temperature (22°C), SARS-CoV-2 remains detectable (via plaque assay) on paper currency for up to 24 hours, on
clothing for up to 4 hours, and on skin for up to 96 hours.
227
Persistence is reduced with warmer temperatures (37°C), and
enhanced at colder temperatures (4°C).
227
SARS-CoV-2 persists for less than 3 days within the pages of library books, and for less than 1 day on the exterior of book
and DVD covers.
3
Both temperature and humidity contribute to SARS-CoV-2 survival on nonporous surfaces, with cooler, less humid
environments facilitating survival (stainless steel, ABS plastic, and nitrile rubber; indoors only; simulated saliva matrix).
55
Experimental studies using SARS-CoV-2 aerosols (1.78-1.96 μm mass median aerodynamic diameter in artificial saliva
matrix) found that simulated sunlight rapidly inactivates the virus, with 90% reductions in infectious concentration after 6
minutes in high-intensity sunlight (similar to mid-June) and 19 minutes in low-intensity sunlight (similar to early March or
October).
517
In dark conditions, the half-life of aerosolized SARS-CoV-2 is approximately 86 minutes in simulated saliva
matrix.
517
Humidity had no significant impact on aerosolized virus survival.
517
DHS developed a tool for estimating the decay of airborne SARS-CoV-2 in different environmental conditions.
151
SARS-CoV-2 has an aerosol half-life of 2.7 hours (without sunlight, particles <5 μm, tested at 21-23°C and 65% RH).
576
Research suggests SARS-CoV-2 retains infectivity as an aerosol for up to 16 hours in appropriate conditions (23°C, 53% RH,
no sunlight).
179
SARS-CoV-2 is susceptible to heat treatment (70°C) but can persist for at least two weeks at refrigerated temperatures
(4°C).
119, 473
SARS-CoV-2 genetic material (RNA) was detected in symptomatic and asymptomatic cruise ship passenger rooms up to 17
days after cabins were vacated. The infectiousness of this material is not known.
410
In a preliminary study, SARS-CoV-2 stability was enhanced when present with bovine serum albumin, which is commonly
used to represent sources of protein found in human sputum.
449
No strong evidence exists showing a reduction in transmission with seasonal increase in temperature and humidity.
364
Modeling suggests that even accounting for potential reductions in transmission due to weather and behavioral changes,
public health interventions will still need to be in effect to limit COVID-19 transmission.
397
A recent study determined that approximately 0.1-1% of initial SARS-CoV-2 inoculated on plastic, stainless steel, glass,
ceramics, wood, latex gloves, cotton, paper, and surgical masks remained after 48 hours.
352
Approximately 0.1% of SARS-
CoV-2 remains in fecal matter after 6 hours.
352
Approximately 0.1% of SARS-CoV-2 in human urine persists after 4-5
days.
352
RNA in clinical samples collected in viral transport medium is stable at 18-25°C or 2-8°C for up to 21 days without
impacting real-time RT-PCR results.
539
RNA in clinical samples is also stable at 4°C for up for 4 weeks with regard to
quantitative RT-PCR testing (given that the sample contains 5,000 copies/mL). Separately, storage of RNA in phosphate
buffered saline (PBS) at room-temperature (18-25°C) resulted in unstable sample concentrations.
455
SARS-CoV-2 was detectable on wooden chopsticks used by symptomatic and asymptomatic COVID-19 patients, though
sample sizes were small and no efforts were made to isolate infectious virus.
363
What do we need to know?
Additional testing on SARS-CoV-2, as opposed to surrogate viruses, is needed to support initial estimates of stability. Tests
quantifying infectivity, rather than the presence of viral RNA, are needed.
Duration of SARS-CoV-2 infectivity via fomites and surfaces (contact hazard)
Stability of SARS-CoV-2 on PPE (e.g., Tyvek)
Stability of SARS-CoV-2 in food (to date, no known infections from contaminated food).
609
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 14
Decontamination What are effective methods to kill the agent in the environment?
What do we know?
Soap and water, as well as common alcohol and chlorine-based cleaners, hand sanitizers, and disinfectants are effective
at inactivating SARS-CoV-2 on hands and surfaces.
SARS-CoV-2
Alcohol-based hand rubs are effective at inactivating SARS-CoV-2.
306
Chlorine bleach (1%, 2%), 70% ethanol and 0.05% chlorhexidine are effective against live virus in lab tests.
118
Twice-daily cleaning with sodium dichloroisocyanurate decontaminated surfaces in COVID-19 patient hospital rooms.
432
EPA has released a list of SARS-CoV-2 disinfectants, but most solutions were not tested on SARS-CoV-2.
14
Several solutions
have been tested against SARS-CoV-2 and found to be effective, including those based on para-chloro-meta-xylenol,
salicylic acid, and quaternary ammonium compounds.
260
Two of these products, Lysol Disinfectant Spray (EPA Reg No.
777-99) and Lysol Disinfectant Max Cover Mist (EPA Reg No. 777-127) have specifically been approved for SARS-CoV-2
decontamination.
366
Oral antiseptic rinses used in pre-procedural rinses for dentistry containing povidone-iodine (PVP-I) are effective
decontaminants of SARS-CoV-2, with 15-sec and 30-sec contact times completely inactivating SARS-CoV-2 at
concentrations above 0.5% in lab tests.
51
Holder pasteurization of donor breast milk spiked with SARS-CoV-2 rendered the virus inactive, demonstrating that
standard decontamination procedures are effective at reducing risk of COVID-19 risk in infants via donor breast milk.
573
Efforts are ongoing to create paint-on surfaces that can rapidly inactivate SARS-CoV-2.
44
Researchers have identified four methods capable of decontaminating N95 respirators while maintaining physical integrity
(fit factor): UV radiation, heating to 70°C, and vaporized hydrogen peroxide (VHP).
184
Ethanol (70%) was associated with
loss of physical integrity.
184
Hydrogen peroxide vapor (VHP) can repeatedly decontaminate N95 respirators.
484
Devices capable of decontaminating
80,000 masks per day have been granted Emergency Use Authorization from the FDA.
172
The FDA has issued an Emergency Use Authorization for a system capable of decontaminating ten N95 masks at a time
using devices already present in many US hospitals.
63
Respirator decontamination methods such as VHP appear to maintain filtration efficiency after repeated decontamination
cycles.
454
Several decontamination methods, including VHP, moist heat, and UVC, are capable of decontaminating N95
respirators for 10-20 cycles without loss of fit or filtration efficiency.
7
Other Coronaviruses
Chlorine-based
614
and ethanol-based
128
solutions are recommended.
Heat treatment (56°C) is sufficient to kill coronaviruses,
469, 674
though effectiveness depends partly on protein in the
sample.
469
70% ethanol, 50% isopropanol, sodium hypochlorite (0.02% bleach), and UV radiation can inactivate several coronaviruses
(MHV and CCV).
502
Ethanol-based biocides effectively disinfect coronaviruses dried on surfaces, including ethanol containing gels similar to
hand sanitizer.
254, 622
Surface spray disinfectants such as Mikrobac, Dismozon, and Korsolex are effective at reducing infectivity of the closely
related SARS-CoV-1 after 30 minutes of contact.
468
Coronaviruses may be resistant to heat inactivation for up to 7 days when stabilized in stool.
564-565
Coronaviruses are more stable in matrixes such as respiratory sputum.
160
What do we need to know?
Additional decontamination studies, particularly with regard to PPE and other items in short supply, are needed.
What is the minimal contact time for disinfectants?
Does contamination with human fluids/waste alter disinfectant efficacy profiles?
How effective is air filtration at reducing transmission in healthcare, airplanes, and public spaces?
Are landfills and wastewater treatment plants effective at inactivating SARS-CoV-2?
Is heat or UV decontamination effective to clean N95 masks, respirators and other types of PPE for multi-use?
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 15
PPE What PPE is effective, and who should be using it?
What do we know?
The effectiveness of PPE for SARS-CoV-2 is currently unknown, and data from other related coronaviruses are used for
guidance. Healthcare workers are at high risk of acquiring COVID-19, even with recommended PPE.
Healthcare worker illnesses
562
demonstrates human-to-human transmission despite isolation, PPE, and infection
control.
516
Risk of transmission to healthcare workers is high.
478
Contacts with healthcare workers tend to transmit COVID-
19 more often than other casual contacts.
596
Over 50% of US healthcare workers infected with COVID-19 report work in a
healthcare setting as their single source of exposure.
70
Hospital-acquired infection rates fell after introduction of
comprehensive infection control measures, including expanded testing and use of PPE for all patient contacts.
485
Universal
masking policies also reduced the rate of new healthcare worker infections.
595
A modeling study suggests that healthcare workers are primarily at risk from droplet and inhalation exposure (compared
to contact with fomites), with greater risk while in closer proximity to patients.
277
Even among healthcare personnel reporting adequate PPE early in the pandemic (March April), rates of infection were
3.4 times higher in healthcare personnel than the general population.
420
“Healthcare personnel entering the room [of SARS-CoV-2 patients] should use standard precautions, contact precautions,
airborne precautions, and use eye protection (e.g., goggles or a face shield).”
91
WHO indicates healthcare workers should
wear clean long-sleeve gowns as well as gloves.
613
PPE that covers all skin may reduce exposure to pathogens.
180, 605
Respirators (NIOSH-certified N95, EUFFP2 or equivalent) are recommended for those dealing with possible aerosols.
614
Additional protection, such as a Powered Air Purifying Respirator (PAPR) with a full hood, should be considered for high-
risk procedures (i.e., intubation, ventilation).
66
KN95 respirators are, under certain conditions, approved for use under FDA Emergency Use Authorization.
173
On May 7,
the FDA rescinded a number of KN95 models that no longer meet the EUA criteria and are no longer authorized.
178
A study suggests that P100 respirators with removable filter cartridges have similar filtration efficiency compared to N95
respirators and could plausibly be used if N95 respirators were in short supply.
452
Particular care should be taken with “duckbill” N95 respirators, which may fail fit tests after repeated doffing.
145
Dome-
shaped N95 respirators also failed fit tests after extended use.
145
Non-medical Masks may be effective at slowing transmission, though data are sparse.
2, 5
On 4/3/2020, the US CDC recommended wearing cloth face masks in public where social distancing measures are difficult
to maintain.
93
The WHO recommends that the general population wear non-medical masks when in public settings and
when physical distancing is difficult, and that vulnerable populations (e.g., elderly) wear medical masks when close contact
is likely.
610
Infected individuals wearing facemasks in the home before the onset of symptoms was associated with a
reduction in household transmission.
598
Modeling suggests that widespread use of facemasks is effective at reducing transmission
419
even when individual mask
efficiency is low,
163
though their benefits are maximized when most of the population wears masks.
186
A meta-analysis of SARS-CoV-1, MERS, and COVID-19 transmission events found evidence that wearing face masks and eye
protection were each associated with lower risk of transmission.
123
N95 respirators were associated with a larger reduction
in transmission risk compared to surgical face masks.
123
Physical distance (>1 or 2 meters) was also associated with lower
transmission risk.
123
In a separate meta-analysis, N95 respirators were found to be beneficial for reducing the occurrence
of respiratory illness in health care professionals including influenza, though surgical masks were similarly effective for
influenza.
428
N95 respirators were associated with large reductions (up to 80%) in SARS-CoV-1 infections.
428
Surgical face masks, respirators and homemade face masks may prevent transmission of coronaviruses from infectious
individuals (with or without symptoms) to other individuals.
140, 326, 575
Surgical masks were associated with a significant
reduction in the amount of seasonal coronavirus (not SARS-CoV-2) expressed as aerosol particles (<5 μm).
326
The efficacy of homemade PPE, made with T-shirts, bandanas, or similar materials, is less than standard PPE, but may offer
some protection if no other options are available.
124, 139, 480
Some non-standard materials (e.g., cotton, cotton hybrids) may
be able to filter out >90% of simulant particles >0.3μm,
297
while other materials (e.g., T-shirt, vacuum cleaner bag, towels)
appear to have lower filtration efficacy (~35-62%).
591
Of 42 homemade materials tested, the three with the greatest
filtration efficiencies were layered cotton with raised visible fibers.
660
What do we need to know?
Most PPE recommendations have not been made on SARS-CoV-2 data, and comparative efficacy of different PPE for
different tasks (e.g., intubation) is unknown. Identification of efficacious PPE for healthcare workers is critical due to their
high rates of infection.
Is COVID-19 transmitted by the aerosol/airborne route (in droplets and particles <5μm), and if so, what is the impact?
When and how do N95 respirators and other face coverings fail?
What is the appropriate PPE for first responders? Airport screeners?
What are proper procedures for reducing spread and transmission rates in medical facilities?
How effective are homemade masks at reducing SARS-CoV-2 transmission?
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 16
Forensics Natural vs intentional use? Tests to be used for attribution.
What do we know?
All current evidence supports the natural emergence of SARS-CoV-2 via a bat and possible intermediate mammal species.
New analysis of SARS-CoV-2 and related SARS-like coronaviruses suggests that SARS-CoV-2 jumped directly from bats to
humans, without the influence of an intermediate 'mixing' host.
58
Pangolin coronaviruses were determined to be more
divergent and had split off from bat coronaviruses much earlier than SARS-CoV-2.
58
Current sampling of pangolin viruses
does not implicate them as a conduit to human adaptation of SARS-CoV-2.
58
These data suggest that SARS-CoV-2 emerged
from circulating bat coronaviruses in SE China/SE Asia and that additional zoonotic emergence of novel coronaviruses
could occur.
Genomic analysis places SARS-CoV-2 into the beta-coronavirus clade, with close relationship to bat coronaviruses. The
SARS-CoV-2 virus is distinct from SARS-CoV-1 and MERS viruses.
154
Genomic analysis suggests that SARS-CoV-2 is a natural variant and is unlikely to be human-derived or otherwise created
by “recombination” with other circulating strains of coronavirus.
21, 677
Comparing genomes of multiple coronaviruses using machine-learning has identified key genomic signatures shared
among high case fatality rate coronaviruses (SARS-CoV-1, SARS-CoV-2, MERS) and animal counterparts.
223
These data
further suggest that SARS-CoV-2 emergence is the result of natural emergence and that there is a potential for future
zoonotic transmission of additional pathogenic strains to humans.
223
Deletion mutants were identified at low levels in human clinical samples, suggesting that the PRRA furin cleavage site
alone is not fully responsible for human infection, but does confer a fitness advantage in the human host.
624
Additional
whole-genome sequencing in humans would help to confirm this finding.
Genomic data support at least two plausible origins of SARS-CoV-2: “(i) natural selection in a non-human animal host prior
to zoonotic transfer, and (ii) natural selection in humans following zoonotic transfer.”
21
Both scenarios are consistent with
the observed genetic changes found in all known SARS-CoV-2 isolates.
Some SARS-CoV-2 genomic evidence indicates a close relationship with pangolin coronaviruses,
623
and data suggest that
pangolins may be a natural host for beta-coronaviruses.
344, 346
Genomic evidence suggests a plausible recombination event
between a circulating coronavirus in pangolins and bats could be the source of SARS-CoV-2.
335, 640
Emerging studies are
showing that bats are not the only reservoir of SARS-like coronaviruses.
667
Additional research is needed.
There are multiple studies showing that the SARS-CoV-2 S protein receptor binding domain, the portion of the protein
responsible for binding the human receptor ACE2, was acquired through recombination between coronaviruses from
pangolins and bats.
21, 335, 345, 667
These studies suggest that pangolins may have played an intermediate role in the
adaptation of SARS-CoV-2 to be able to bind to the human ACE2 receptor. Additional research is needed.
A novel bat coronavirus (RmYN02) has been identified in China with an insertion between the S1/S2 cleavage site of the
Spike protein. While distinct from the furin cleavage site insertion in SARS-CoV-2, this evidence shows that such insertions
can occur naturally.
676
Additionally, “[…] SARS-CoV-2 is not derived from any previously used virus backbone,” reducing the likelihood of
laboratory origination,
21
and “[…] genomic evidence does not support the idea that SARS-CoV-2 is a laboratory construct,
[though] it is currently impossible to prove or disprove the other theories of its origin.
21
Work with other coronaviruses has indicated that heparan sulfate dependence can be an indicator of prior cell passage,
due to a mutation in the previous furin enzyme recognition motif.
143
What do we need to know?
Identifying the intermediate species between bats and humans would aid in reducing potential spillover from a natural
source. Wide sampling of bats, other wild animals, and humans is needed to address the origin of SARS-CoV-2.
What tests for attribution exist for coronavirus emergence?
What is the identity of the intermediate species?
Are there closely related circulating coronaviruses in bats or other animals with the novel PRRA cleavage site found in
SARS-CoV-2?
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 17
Genomics How does the disease agent compare to previous strains?
What do we know?
Current evidence suggests that SARS-CoV-2 accumulates substitutions and mutations at a similar rate as other
coronaviruses. Mutations and deletions in specific portions of the SARS-CoV-2 genome have not been linked to any
changes in transmission or disease severity, though modeling work is attempting to identify possible changes.
There have been no documented cases of SARS-CoV-2 prior to December 2019. Preliminary genomic analyses, however,
suggest that the first human cases of SARS-CoV-2 emerged between 10/19/2019 12/17/2019.
23, 43, 471
Analysis of more than 7,000 SARS-CoV-2 genome samples provides an estimated mutation rate of 6x10
-4
nucleotides per
genome per year.
578
The same analysis estimates the emergence of SARS-CoV-2 in humans between October and
December 2019.
578
This aligns with the first known human cases in China in early December 2019, in Europe in late
December 2019,
150
circulation in the US (Washington State) in February 2020,
627
and circulation in Mexico in March,
2020.
557
In both California
149
and New York City,
210
phylogenetic evidence supports multiple introductions of SARS-CoV-2
from both inside and outside the US.
Despite evidence of variation in the genome
98
and areas under positive selection,
73
there are no known associations
between particular mutations and changes in transmission or virulence.
72
Thus, there is currently no evidence of distinct
SARS-CoV-2 phenotypes at this time.
367, 578
Research attempting to define clades or subgroups of SARS-CoV-2 based solely
on genomic features has suffered from limited data
654
and sampling bias.
193
In 94 COVID-19 patients, there was no
association between viral genotype and clinical severity.
668
Phylogenetic and clinical analysis suggests the D614G mutation in the Spike protein is associated with higher rates of SARS-
CoV-2 transmission, but no change in clinical severity in infected patients.
302
However, it is difficult to determine whether
this mutation is overrepresented due to founder effects, or whether it truly spreads more rapidly than other isolates.
Preliminary experimental evidence suggests that this mutation increases infectivity in cell lines, but additional animal
model work is needed to confirm the effect of this mutation on transmission.
665
Recent analysis of >16,000 genomes of SARS-CoV-2 suggests two major introductions in the US, one associated with the
West coast and one with the Eastern portion of the US.
413
A genome-wide association study in humans identified two loci corresponding to higher risk of severe COVID-19 (3p.21.31
and 9q34.2), including one associated with blood type.
164
Individuals with type-O blood showed reduced risk of severe
disease, while individuals with type-A blood showed an increased risk.
164
SARS-CoV-2 is acquiring nucleotide changes at a rate that suggests the virus is undergoing purifying selection (that the
genome is stabilizing toward a common genome).
630
Low genetic diversity early in the epidemic suggests that SARS-CoV-2
was capable of jumping to human and other mammalian hosts,
630
and that additional jumps into humans from reservoir
species may occur.
Phylogenetics suggest that SARS-CoV-2 is of bat origin, but is closely related to coronaviruses found in pangolins.
344, 346
The SARS-CoV-2 Spike protein, which mediates entry into host cells and is the major determinant of host range, is very
similar to the SARS-CoV-1 Spike protein.
359
The rest of the genome is more closely related to two separate bat
359
and
coronaviruses found in pangolins.
346
An analysis of SARS-CoV-2 sequences from Singapore has identified a large nucleotide (382 bp) deletion in ORF-8.
548
In
Arizona, researchers identified an 81-base pair deletion (removing 27 amino acids) in the ORF-7a protein, indicating that
mutations can be detected by routine sentinel surveillance. The function of these deletions are unknown at this time.
240
A recent report of virus mutations within patients needs more research.
283
Additional analysis of data suggests the results
may be due to experimental methods.
206, 644
Structural modeling suggests that observed changes in the genetic sequence of the SARS-CoV-2 Spike protein may enhance
binding of the virus to human ACE2 receptors.
434
More specifically, changes to two residues (Q493 and N501) are linked
with improving the stability of the virus-receptor binding complex.
434
Additionally, structural modeling identified several
existing mutations that may enhance the stability of the receptor binding domain, potentially increasing binding
efficacy.
436
Infectivity assays are needed to validate the potential phenotypic results identified in these studies.
A key difference between SARS-CoV-2 and other beta-coronaviruses is the presence of a polybasic furin cleavage site in the
Spike protein (insertion of a PRRA amino acid sequence between S1 and S2).
132
The US CDC is launching a national genomics consortium to assess SARS-CoV-2 genomic changes over time.
86
What do we need to know?
Research linking genetic changes to differences in phenotype (e.g., transmissibility, virulence, progression in patients) is
needed.
Are there similar genomic differences in the progression of coronavirus strains from bat to intermediate species to human?
Are there different strains or clades of circulating virus? If so, do they differ in virulence?
What are the mutations in SARS-CoV-2 that allowed human infection and transmission?
How do viral mutations affect the long-term efficacy of specific vaccines?
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 18
Forecasting What forecasting models and methods exist?
What do we know?
There are many groups focused on forecasting cases, hospitalizations, or fatalities due to COVID-19. Each model has its
own methods and goals, summarized in this section. An evaluation of model performance is beyond the scope of this
document. Assumptions and limitations of each model are detailed at the linked reference.
US CDC forecasting
The US CDC is hosting an ongoing forecasting initiative, and provides ensemble forecasts based on the arithmetic mean of
participating groups.
89
Columbia University Model: Spatially-explicit SEIR model incorporating contact rate reductions due to social distancing.
Estimates total cases and risk of healthcare overrun.
499
Imperial College London: Week-ahead forecasts of cases, deaths, and transmissibility (R
0
) at the country-level.
Transmissibility estimates used to forecast incidence based on Poisson renewal process.
49
Institute of Health Metrics and Evaluation (IHME): Mechanistic SEIR model combined with curve-fitting techniques to
forecast cases, hospital resource use, and deaths at the state and country level.
259
Los Alamos National Laboratory: Forecasts of state-level cases and deaths based on statistical growth model fit to reported
data. Implicitly accounts for effects of social distancing and other control measures.
314
Massachusetts Institute of Technology: Mechanistic SEIR model that forecasts cases, hospitalizations, and deaths. Also
includes estimates of intervention measures, allows users to project based on different intervention scenarios (e.g., social
distancing lasting for 3 vs. 4 weeks).
401
Northeastern University: Spatially explicit, agent-based epidemic model used to forecast fatalities, hospital resource use,
and the cumulative attack rate (proportion of the population infected) for unmitigated and mitigated scenarios.
424
Notre Dame University: Agent-based model forecasting cases and deaths for Midwest states. Includes effectiveness of
control measures like social distancing.
457
University of California, Los Angeles: Mechanistic SIR model with statistical optimization to find best-fitting parameter
values. Estimates confirmed and active cases, fatalities, and transmission rates at the national and state levels.
572
University of Chicago: Age-structured SEIR model that accounts for asymptomatic individuals and the effectiveness of
social distancing policies. Forecasts only for Illinois.
117
University of Geneva: Country-level forecasts of cases, deaths, and transmissibility (R
0
). Uses statistical models fit to
reported data, not mechanistic models.
188
University of Massachusetts, Amherst: Aggregation of state and national forecasts to create ensemble model.
477
University of Texas, Austin: Machine learning model aimed at identifying links between social distancing measures and
changes in death rates. Forecasts fatalities at the state, metropolitan area, and national level. Cannot be used to make
projections beyond initial infection wave.
398
Youyang Gu: Mechanistic SEIR model coupled with machine learning algorithms to minimize error between predicted and
observed values. Forecasts deaths and infections at the state and national level, including 60 non-US countries. Includes
effects of public health control efforts.
218
Auquan: SEIR model used to forecast deaths and illnesses at the country and state level.
34
CovidSim: SEIR model allowing users to simulate the effects of future intervention policies at the state and national level
(US only).
116
Other forecasting efforts:
University of Georgia: Statistical models used to estimate the current number of symptomatic and incubating individuals,
beyond what is reported (e.g., “nowcasts”). Available at the state and national level for the US.
97
Hospital IQ has a dashboard that forecasts hospital and ICU admissions for each county in the US. Relies in part on IHME
forecasts.
263
COVID Act Now: State and county-level dashboard focused on re-opening strategies, showing trends in four metrics related
to COVID-19 risk (change in cases, total testing capacity, fraction of positive tests, and availability of ICU beds).
Fundamentally uses an SEIR model fit to observed data.
425
Researchers use a rolling window analysis incorporating uncertainty in the generation time distribution to estimate time-
varying transmission rates in US states (the effective reproduction number, R
eff
or R
t
).
9
Georgia Tech Applied Bioinformatics Laboratory: Tool providing probability of at least one infected individual attending an
event, accounting for event size and county/state COVID-19 prevalence.
101
MITRE: Dashboards for COVID-19 forecasts and decision support tools, including regional comparisons and intervention
planning. Uses combinations of SEIR models and curve-fitting approaches.
403
What do we need to know?
Forecasts differ in how they handle public health interventions such as shelter-in-place orders and tracking how methods
change in the near future will be important for understanding limitations going forward.
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 19
Table 1. Definitions of commonly-used acronyms
Acronym/Term Definition Description
ACE2 Angiotensin-converting enzyme 2
Acts as a receptor for SARS-CoV and SARS-CoV-2, allowing entry
into human cells
Airborne
transmission
Aerosolization of infectious
particles
Aerosolized particles can spread for long distances (e.g., between
hospital rooms via HVAC systems). Particles generally <5 μm.
ARDS
Acute respiratory distress
syndrome
Leakage of fluid into the lungs which inhibits respiration and leads
to death
Attack rate
Proportion ofat-risk” individuals
who develop infection
Defined in terms of “at-risk” population such as schools or
households, defines the proportion of individuals in those
populations who become infected after contact with an infectious
individual
CCV
Canine coronavirus
Canine coronavirus
CFR
Case Fatality Rate
Number of deaths divided by confirmed patients
CoV Coronavirus
Virus typified by crown-like structures when viewed under
electron microscope
COVID-19
Coronavirus disease 19
Official name for the disease caused by the SARS-CoV-2 virus.
Droplet
transmission
Sneezing, coughing
Transmission via droplets requires relatively close contact (e.g.,
within 6 feet)
ELISA
Enzyme-linked immunosorbent
assay
Method for serological testing of antibodies
Fomite Inanimate vector of disease
Surfaces such as hospital beds, doorknobs, healthcare worker
gowns, faucets, etc.
HCW
Healthcare worker
Doctors, nurses, technicians dealing with patients or samples
Incubation
period
Time between infection and
symptom onset
Time between infection and onset of symptoms typically
establishes guidelines for isolating patients before transmission is
possible
Infectious
period
Length of time an individual can
transmit infection to others
Reducing the infectious period is a key method of reducing overall
transmission; hospitalization, isolation, and quarantine are all
effective methods
Intranasal
Agent deposited into external
nares of subject
Simulates inhalation exposure by depositing liquid solution of
pathogen/virus into the nose of a test animal, where it is then
taken up by the respiratory system.
MERS
Middle-East Respiratory Syndrome
Coronavirus with over 2,000 cases in regional outbreak since 2012
MHV
Mouse hepatitis virus
Coronavirus surrogate
Nosocomial
Healthcare- or hospital-associated
infections
Characteristic of SARS and MERS outbreaks, lead to refinement of
infection control procedures
PCR Polymerase chain reaction
PCR (or real-time [RT] or quantitative [Q] PCR) is a method of
increasing the amount of genetic material in a sample, which is
then used for diagnostic testing to confirm the presence of SARS-
CoV-2
PFU Plaque forming unit
Measurement of the number of infectious virus particles as
determined by plaque forming assay. A measurement of sample
infectivity.
PPE Personal protective equipment
Gowns, masks, gloves, and any other measures used to prevent
spread between individuals
R
0
Basic reproduction number
A measure of transmissibility. Specifically, the average number of
new infections caused by a typical infectious individual in a wholly
susceptible population.
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 20
Acronym/Term Definition Description
SARS
Severe Acute Respiratory
Syndrome
Coronavirus with over 8,000 cases in global 2002-2003 outbreak
SARS-CoV-2
Severe acute respiratory
syndrome coronavirus 2
Official name for the virus previously known as 2019-nCoV.
SEIR
Susceptible (S), exposed (E),
infected (I), and resistant (R)
A type of modeling that incorporates the flow of people between
the following states: susceptible (S), exposed (E), infected (I), and
resistant (R), and is being used for SARS-CoV-2 forecasting
Serial interval
Length of time between symptom
onset of successive cases in a
transmission chain
The serial interval can be used to estimate R
0
, and is useful for
estimating the rate of outbreak spread
SIR
Susceptible (S), infected (I), and
resistant (R)
A type of modeling that incorporates the flow of people between
the following states: susceptible (S), infected (I), and resistant (R),
and is being used for SARS-CoV-2 forecasting
TCID
50
50% Tissue Culture Infectious Dose
The number of infectious units which will infect 50% of tissue
culture monolayers. A measurement of sample infectivity.
Transgenic Genetically modified
In this case, animal models modified to be more susceptible to
MERS and/or SARS by adding proteins or receptors necessary for
infection
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 21
Literature Cited:
1. Coronavirus diagnosed at mink farms in North Brabant. NOS 2020.
https://nos.nl/artikel/2331784-
coronavirus-vastgesteld-bij-nertsenfokkerijen-in-noord-brabant.html
2. Masks for Prevention of Respiratory Virus Infections, Including SARS-CoV-2, in Health Care and
Community Settings. Annals of Internal Medicine 0 (0), null.
https://www.acpjournals.org/doi/abs/10.7326/M20-3213
3. Research Shows Virus Undetectable on Five Highly Circulated Library Materials After Three Days.
Institute for Library and Museum Services: 2020.
https://www.imls.gov/news/research-shows-virus-
undetectable-five-highly-circulated-library-materials-after-three-days
4. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) United States,
February 12March 16, 2020. . MMWR 2020.
https://www.cdc.gov/mmwr/volumes/69/wr/mm6912e2.htm?s_cid=mm6912e2_w#suggestedcitation
5. Update Alert: Masks for Prevention of Respiratory Virus Infections, Including SARS-CoV-2, in Health
Care and Community Settings. Annals of Internal Medicine 0 (0), null.
https://www.acpjournals.org/doi/abs/10.7326/L20-0948
6. [Wuhan Pneumonia] The Hospital Authority stated that 2 critically ill patients needed external life
support treatment.
https://www.singtao.ca/4037242/2020-01-14/news-
%E3%80%90%E6%AD%A6%E6%BC%A2%E8%82%BA%E7%82%8E%E3%80%91%E9%86%AB%E7%AE%A1
%E5%B1%80%E6%8C%872%E5%90%8D%E9%87%8D%E7%97%87%E7%97%85%E6%82%A3%E9%9C%80
%E9%AB%94%E5%A4%96%E7%94%9F%E5%91%BD%E6%94%AF%E6%8C%81%E6%B2%BB%E7%99%82/
?variant=zh-hk.
7. 3M, Decontamination of 3M Filtering Facepiece Respirators, such as N95 Respirators, in the United
States - Considerations; 3M: 2020.
https://multimedia.3m.com/mws/media/1824869O/decontamination-methods-for-3m-filtering-
facepiece-respirators-technical-bulletin.pdf
8. AAAS, You may be able to spread coronavirus just by breathing, new report finds. Science 2 April,
2020.
https://www.sciencemag.org/news/2020/04/you-may-be-able-spread-coronavirus-just-breathing-
new-report-finds
9. Abbott, S.; Hellewell, J.; Thompson, R.; Sherratt, K.; Gibbs, H.; Bosse, N.; Munday, J.; Meakin, S.;
Doughty, E.; Chun, J.; Chan, Y.; Finger, F.; Campbell, P.; Endo, A.; Pearson, C.; Gimma, A.; Russell, T.; null,
n.; Flasche, S.; Kucharski, A.; Eggo, R.; Funk, S., Estimating the time-varying reproduction number of
SARS-CoV-2 using national and subnational case counts [version 1; peer review: awaiting peer review].
Wellcome Open Research 2020, 5 (112). https://wellcomeopenresearch.org/articles/5-112/v1
10. Abolghasemi, H.; Eshghi, P.; Cheraghali, A. M.; Imani Fooladi, A. A.; Bolouki Moghaddam, F.;
Imanizadeh, S.; Moeini Maleki, M.; Ranjkesh, M.; Rezapour, M.; Bahramifar, A.; Einollahi, B.; Hosseini, M.
J.; Jafari, N. J.; Nikpouraghdam, M.; Sadri, N.; Tazik, M.; Sali, S.; Okati, S.; Askari, E.; Tabarsi, P.; Aslani, J.;
Sharifipour, E.; Jarahzadeh, M. H.; Khodakarim, N.; Salesi, M.; Jafari, R.; Shahverdi, S., Clinical efficacy of
convalescent plasma for treatment of COVID-19 infections: Results of a multicenter clinical study.
Transfus Apher Sci 2020, 102875.
11. Ackermann, M.; Verleden, S. E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.;
Werlein, C.; Stark, H.; Tzankov, A.; Li, W. W.; Li, V. W.; Mentzer, S. J.; Jonigk, D., Pulmonary Vascular
Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine 2020.
https://www.nejm.org/doi/full/10.1056/NEJMoa2015432
12. Adam, D.; Wu, P.; Wong, J.; Lau, E.; Tsang, T.; Cauchemez, S.; Leung, G.; Cowling, B., Clustering and
superspreading potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in
Hong Kong. 2020.
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 22
13. Adams, M.; Katz, D.; Grandpre, J., Updated Estimates of Chronic Conditions Affecting Risk for
Complications from Coronavirus Disease, United States. Emerging Infectious Disease journal 2020, 26
(9). https://wwwnc.cdc.gov/eid/article/26/9/20-2117_article
14. Agency, U. S. E. P., EPA’s Registered Antimicrobial Products for Use Against Novel Coronavirus SARS-
CoV-2, the Cause of COVID-19.
https://www.epa.gov/pesticide-registration/list-n-disinfectants-use-
against-sars-cov-2.
15. Agrawal, A. S.; Garron, T.; Tao, X.; Peng, B. H.; Wakamiya, M.; Chan, T. S.; Couch, R. B.; Tseng, C. T.,
Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and
disease. J Virol 2015, 89 (7), 3659-70.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403411/pdf/zjv3659.pdf
16. Aleta, A.; Martin-Corral, D.; Pastore y Piontti, A.; Ajelli, M.; Litivinova, M.; Chinazzi, M.; Dean, N.;
Halloran, M. E.; Longini, I.; Merler, S.; Pentland, A.; Vespignani, A.; Moro, E.; Moreno, Y., Modeling the
impact of social distancing, testing, contact tracing and household quarantine on second-wave scenarios
of the COVID-19 epidemic. Preprint 2020.
https://www.mobs-
lab.org/uploads/6/7/8/7/6787877/tracing_main_may4.pdf
17. Aleta, A.; Moreno, Y., Evaluation of the potential incidence of COVID-19 and effectiveness of
containment measures in Spain: a data-driven approach. BMC Medicine 2020, 18 (1), 157.
https://doi.org/10.1186/s12916-020-01619-5
18. Ali, S. T.; Wang, L.; Lau, E. H. Y.; Xu, X.-K.; Du, Z.; Wu, Y.; Leung, G. M.; Cowling, B. J., Serial interval of
SARS-CoV-2 was shortened over time by nonpharmaceutical interventions. Science 2020, eabc9004.
https://science.sciencemag.org/content/sci/early/2020/07/20/science.abc9004.full.pdf
19. Altmann, D. M.; Douek, D. C.; Boyton, R. J., What policy makers need to know about COVID-19
protective immunity. The Lancet 2020. https://doi.org/10.1016/S0140-6736(20)30985-5
20. An, M. H.; Kim, M. S.; park, Y.; Kim, B.-O.; Kang, S. H.; Kimn, W. J.; Park, S. K.; Park, H.-W.; Yang, W.;
Jang, J.; Jang, S.; Hwang, T.-H., Treatment Response to Hydroxychloroquine and Antibiotics for mild to
moderate COVID-19: a retrospective cohort study from South Korea. medRxiv 2020,
2020.07.04.20146548. http://medrxiv.org/content/early/2020/07/07/2020.07.04.20146548.abstract
21. Andersen, K. G.; Rambaut, A.; Lipkin, W. I.; Holmes, E. C.; Garry, R. F., The proximal origin of SARS-
CoV-2. Nature Medicine 2020. https://doi.org/10.1038/s41591-020-0820-9
22. Anderson, E. L.; Turnham, P.; Griffin, J. R.; Clarke, C. C., Consideration of the Aerosol Transmission for
COVID-19 and Public Health. Risk Analysis 2020, 40 (5), 902-907.
https://onlinelibrary.wiley.com/doi/abs/10.1111/risa.13500
23. Anderson, K., Estimates of the clock and TMRCA for 2019-nCoV based on 27 genomes.
http://virological.org/t/clock-and-tmrca-based-on-27-genomes/347
(accessed 01/26/2020).
24. AnGes, Study of COVID-19 DNA Vaccine (AG0301-COVID19).
https://clinicaltrials.gov/ct2/show/NCT04463472?term=NCT04463472&draw=2&rank=1
.
25. Antony, S. J.; Davis, M. A.; Davis, M. G.; Almaghlouth, N. K.; Guevara, R.; Omar, F.; Del Rey, F.;
Hassan, A.; Arian, M. U.; Antony, N.; Prakash, B. V., Early use of tocilizumab in the prevention of adult
respiratory failure in SARS-CoV-2 infections and the utilization of interleukin-6 levels in the
management. Journal of Medical Virology 2020, n/a (n/a). https://doi.org/10.1002/jmv.26288
26. Arcturus, Phase 1/2 Ascending Dose Study of Investigational SARS-CoV-2 Vaccine ARCT-021 in
Healthy Adult Subjects.
https://clinicaltrials.gov/ct2/show/NCT04480957?term=vaccine&cond=covid-
19&draw=10.
27. Arentz, M.; Yim, E.; Klaff, L.; Lokhandwala, S.; Riedo, F. X.; Chong, M.; Lee, M., Characteristics and
Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA 2020.
https://doi.org/10.1001/jama.2020.4326
28. Argenziano, M. G.; Bruce, S. L.; Slater, C. L.; Tiao, J. R.; Baldwin, M. R.; Barr, R. G.; Chang, B. P.; Chau,
K. H.; Choi, J. J.; Gavin, N.; Goyal, P.; Mills, A. M.; Patel, A. A.; Romney, M.-L. S.; Safford, M. M.; Schluger,
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 23
N. W.; Sengupta, S.; Sobieszczyk, M. E.; Zucker, J. E.; Asadourian, P. A.; Bell, F. M.; Boyd, R.; Cohen, M. F.;
Colquhoun, M. I.; Colville, L. A.; de Jonge, J. H.; Dershowitz, L. B.; Dey, S. A.; Eiseman, K. A.; Girvin, Z. P.;
Goni, D. T.; Harb, A. A.; Herzik, N.; Householder, S.; Karaaslan, L. E.; Lee, H.; Lieberman, E.; Ling, A.; Lu,
R.; Shou, A. Y.; Sisti, A. C.; Snow, Z. E.; Sperring, C. P.; Xiong, Y.; Zhou, H. W.; Natarajan, K.; Hripcsak, G.;
Chen, R., Characterization and Clinical Course of 1000 Patients with COVID-19 in New York: retrospective
case series. medRxiv 2020, 2020.04.20.20072116.
https://www.medrxiv.org/content/medrxiv/early/2020/04/22/2020.04.20.20072116.full.pdf
29. Armstrong, R. A.; Kane, A. D.; Cook, T. M., Outcomes from intensive care in patients with COVID-19:
a systematic review and meta-analysis of observational studies. Anaesthesia 2020, n/a (n/a).
https://onlinelibrary.wiley.com/doi/abs/10.1111/anae.15201
30. Arons, M. M.; Hatfield, K. M.; Reddy, S. C.; Kimball, A.; James, A.; Jacobs, J. R.; Taylor, J.; Spicer, K.;
Bardossy, A. C.; Oakley, L. P.; Tanwar, S.; Dyal, J. W.; Harney, J.; Chisty, Z.; Bell, J. M.; Methner, M.; Paul,
P.; Carlson, C. M.; McLaughlin, H. P.; Thornburg, N.; Tong, S.; Tamin, A.; Tao, Y.; Uehara, A.; Harcourt, J.;
Clark, S.; Brostrom-Smith, C.; Page, L. C.; Kay, M.; Lewis, J.; Montgomery, P.; Stone, N. D.; Clark, T. A.;
Honein, M. A.; Duchin, J. S.; Jernigan, J. A., Presymptomatic SARS-CoV-2 Infections and Transmission in a
Skilled Nursing Facility. New England Journal of Medicine 2020.
https://www.nejm.org/doi/full/10.1056/NEJMoa2008457
31. Arshad, S.; Kilgore, P.; Chaudhry, Z. S.; Jacobsen, G.; Wang, D. D.; Huitsing, K.; Brar, I.; Alangaden, G.
J.; Ramesh, M. S.; McKinnon, J. E.; O’Neill, W.; Zervos, M.; Nauriyal, V.; Hamed, A. A.; Nadeem, O.;
Swiderek, J.; Godfrey, A.; Jennings, J.; Gardner-Gray, J.; Ackerman, A. M.; Lezotte, J.; Ruhala, J.; Fadel, R.;
Vahia, A.; Gudipati, S.; Parraga, T.; Shallal, A.; Maki, G.; Tariq, Z.; Suleyman, G.; Yared, N.; Herc, E.;
Williams, J.; Lanfranco, O. A.; Bhargava, P.; Reyes, K.; Chen, A., Treatment with Hydroxychloroquine,
Azithromycin, and Combination in Patients Hospitalized with COVID-19. International Journal of
Infectious Diseases 2020. https://doi.org/10.1016/j.ijid.2020.06.099
32. Auger, K. A.; Shah, S. S.; Richardson, T.; Hartley, D.; Hall, M.; Warniment, A.; Timmons, K.; Bosse, D.;
Ferris, S. A.; Brady, P. W.; Schondelmeyer, A. C.; Thomson, J. E., Association Between Statewide School
Closure and COVID-19 Incidence and Mortality in the US. JAMA 2020.
https://doi.org/10.1001/jama.2020.14348
33. Auld, S.; Caridi-Scheible, M.; Blum, J. M.; Robichaux, C. J.; Kraft, C. S.; Jacob, J. T.; Jabaley, C. S.;
Carpenter, D.; Kaplow, R.; Hernandez, A. C.; Adelman, M. W.; Martin, G. S.; Coopersmith, C. M.; Murphy,
D. J., ICU and ventilator mortality among critically ill adults with COVID-19. medRxiv 2020,
2020.04.23.20076737.
https://www.medrxiv.org/content/medrxiv/early/2020/04/26/2020.04.23.20076737.full.pdf
34. Auquan, COVID-19 Dashboard. https://covid19-infection-model.auquan.com/.
35. Azimi, P.; Keshavarz, Z.; Cedeno Laurent, J. G.; Stephens, B. R.; Allen, J. G., Mechanistic Transmission
Modeling of COVID-19 on the Diamond Princess Cruise Ship Demonstrates the Importance of Aerosol
Transmission. medRxiv 2020, 2020.07.13.20153049.
https://www.medrxiv.org/content/medrxiv/early/2020/07/15/2020.07.13.20153049.full.pdf
36. Aziz, M.; Fatima, R.; Assaly, R., Elevated Interleukin-6 and Severe COVID-19: A Meta-Analysis. J Med
Virol 2020.
37. Badr, H. S.; Du, H.; Marshall, M.; Dong, E.; Squire, M. M.; Gardner, L. M., Association between
mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. The Lancet
Infectious Diseases 2020. https://doi.org/10.1016/S1473-3099(20)30553-3
38. Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.-Y.; Chen, L.; Wang, M., Presumed Asymptomatic Carrier
Transmission of COVID-19. JAMA.
39. Bao, L.; Deng, W.; Huang, B.; Gao, H.; Liu, J.; Ren, L.; Wei, Q.; Yu, P.; Xu, Y.; Qi, F.; Qu, Y.; Li, F.; Lv, Q.;
Wang, W.; Xue, J.; Gong, S.; Liu, M.; Wang, G.; Wang, S.; Song, Z.; Zhao, L.; Liu, P.; Zhao, L.; Ye, F.; Wang,
H.; Zhou, W.; Zhu, N.; Zhen, W.; Yu, H.; Zhang, X.; Guo, L.; Chen, L.; Wang, C.; Wang, Y.; Wang, X.; Xiao,
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 24
Y.; Sun, Q.; Liu, H.; Zhu, F.; Ma, C.; Yan, L.; Yang, M.; Han, J.; Xu, W.; Tan, W.; Peng, X.; Jin, Q.; Wu, G.;
Qin, C., The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 2020.
40. Bao, L.; Gao, H.; Deng, W.; Lv, Q.; Yu, H.; Liu, M.; Yu, P.; Liu, J.; Qu, Y.; Gong, S.; Lin, K.; Qi, F.; Xu, Y.;
Li, F.; Xiao, C.; Xue, J.; Song, Z.; Xiang, Z.; Wang, G.; Wang, S.; Liu, X.; Zhao, W.; Han, Y.; Wei, Q.; Qin, C.,
Transmission of SARS-CoV-2 via close contact and respiratory droplets among hACE2 mice. The Journal
of Infectious Diseases 2020. https://doi.org/10.1093/infdis/jiaa281
41. Barrington, L.; Cornwell, A., China's Sinopharm begins late stage trial of COVID-19 vaccine in UAE.
https://www.reuters.com/article/us-health-coronavirus-emirates-vaccine/chinas-sinopharm-begins-
late-stage-trial-of-covid-19-vaccine-in-abu-dhabi-idUSKCN24H14T.
42. BBCNews, Coronavirus: AstraZeneca to begin making potential vaccine.
https://www.bbc.com/news/business-52917118
.
43. Bedford, T.; Neher, R., Genomic epidemiology of novel coronavirus (nCoV) using data from GISAID.
https://nextstrain.org/ncov
.
44. Behzadinasab, S.; Chin, A.; Hosseini, M.; Poon, L. L. M.; Ducker, W. A., A Surface Coating that Rapidly
Inactivates SARS-CoV-2. ACS Applied Materials & Interfaces 2020.
https://doi.org/10.1021/acsami.0c11425
45. Beigel, J. H.; Tomashek, K. M.; Dodd, L. E.; Mehta, A. K.; Zingman, B. S.; Kalil, A. C.; Hohmann, E.; Chu,
H. Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R. W.; Dierberg, K.; Tapson, V.; Hsieh, L.;
Patterson, T. F.; Paredes, R.; Sweeney, D. A.; Short, W. R.; Touloumi, G.; Lye, D. C.; Ohmagari, N.; Oh, M.-
d.; Ruiz-Palacios, G. M.; Benfield, T.; Fätkenheuer, G.; Kortepeter, M. G.; Atmar, R. L.; Creech, C. B.;
Lundgren, J.; Babiker, A. G.; Pett, S.; Neaton, J. D.; Burgess, T. H.; Bonnett, T.; Green, M.; Makowski, M.;
Osinusi, A.; Nayak, S.; Lane, H. C., Remdesivir for the Treatment of Covid-19 Preliminary Report. New
England Journal of Medicine 2020. https://www.nejm.org/doi/full/10.1056/NEJMoa2007764
46. Bendavid, E.; Mulaney, B.; Sood, N.; Shah, S.; Ling, E.; Bromley-Dulfano, R.; Lai, C.; Weissberg, Z.;
Saavedra, R.; Tedrow, J.; Tversky, D.; Bogan, A.; Kupiec, T.; Eichner, D.; Gupta, R.; Ioannidis, J.;
Bhattacharya, J., COVID-19 Antibody Seroprevalence in Santa Clara County, California. medRxiv 2020,
2020.04.14.20062463.
https://www.medrxiv.org/content/medrxiv/early/2020/04/17/2020.04.14.20062463.full.pdf
47. Bessière, F.; Roccia, H.; Delinière, A.; Charrière, R.; Chevalier, P.; Argaud, L.; Cour, M., Assessment of
QT Intervals in a Case Series of Patients With Coronavirus Disease 2019 (COVID-19) Infection Treated
With Hydroxychloroquine Alone or in Combination With Azithromycin in an Intensive Care Unit. JAMA
Cardiology 2020. https://doi.org/10.1001/jamacardio.2020.1787
48. BGI, BGI Responds to Novel Coronavirus with Real-Time Detection Kits, Deploys Emergency Team to
Wuhan. 2020.
https://www.bgi.com/global/company/news/bgi-responds-to-novel-coronavirus-with-
real-time-detection-kits-deploys-emergency-team-to-wuhan/
49. Bhatia, S.; al., e., Short-term forecasts of COVID-19 deaths in multiple countries. https://mrc-
ide.github.io/covid19-short-term-forecasts/index.html#introduction.
50. Bi, Q.; Wu, Y.; Mei, S.; Ye, C.; Zou, X.; Zhang, Z.; Liu, X.; Wei, L.; Truelove, S. A.; Zhang, T.; Gao, W.;
Cheng, C.; Tang, X.; Wu, X.; Wu, Y.; Sun, B.; Huang, S.; Sun, Y.; Zhang, J.; Ma, T.; Lessler, J.; Feng, T.,
Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen,
China: a retrospective cohort study. Lancet Infect Dis 2020.
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30287-5/fulltext
51. Bidra, A. S.; Pelletier, J. S.; Westover, J. B.; Frank, S.; Brown, S. M.; Tessema, B., Rapid In-Vitro
Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Using Povidone-Iodine
Oral Antiseptic Rinse. Journal of Prosthodontics 2020, n/a (n/a).
https://onlinelibrary.wiley.com/doi/abs/10.1111/jopr.13209
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 25
52. Biocon, Clinical Trial Shows Itolizumab Reduces Mortality in Patients Hospitalized with COVID-19.
2020.
https://www.globenewswire.com/news-release/2020/07/13/2060993/0/en/Clinical-Trial-Shows-
Itolizumab-Reduces-Mortality-in-Patients-Hospitalized-with-COVID-19.html
53. BioProcessing, K., KBP-201 COVID-19 Vaccine Trial in Healthy Volunteers.
https://clinicaltrials.gov/ct2/show/study/NCT04473690?term=vaccine&cond=covid-19&draw=3
.
54. Biotech, M., Mesa Biotech Receives Emergency Use Authorization from FDA for a 30 Minute Point of
Care Molecular COVID-19 Test. Mesa Biotech: 2020.
https://www.mesabiotech.com/news/euacoronavirus
55. Biryukov, J.; Boydston, J. A.; Dunning, R. A.; Yeager, J. J.; Wood, S.; Reese, A. L.; Ferris, A.; Miller, D.;
Weaver, W.; Zeitouni, N. E.; Phillips, A.; Freeburger, D.; Hooper, I.; Ratnesar-Shumate, S.; Yolitz, J.;
Krause, M.; Williams, G.; Dawson, D. G.; Herzog, A.; Dabisch, P.; Wahl, V.; Hevey, M. C.; Altamura, L. A.,
Increasing Temperature and Relative Humidity Accelerates Inactivation of SARS-CoV-2 on Surfaces.
mSphere 2020, 5 (4), e00441-20. https://msphere.asm.org/content/msph/5/4/e00441-20.full.pdf
56. Blair, R. V.; Vaccari, M.; Doyle-Meyers, L. A.; Roy, C. J.; Russell-Lodrigue, K.; Fahlberg, M.; Monjure, C.
J.; Beddingfield, B.; Plante, K. S.; Plante, J. A.; Weaver, S. C.; Qin, X.; Midkiff, C. C.; Lehmicke, G.; Golden,
N.; Threeton, B.; Penney, T.; Allers, C.; Barnes, M. B.; Pattison, M.; Datta, P. K.; Maness, N. J.; Birnbaum,
A.; Bohm, R. P.; Rappaport, J., ARDS and Cytokine Storm in SARS-CoV-2 Infected Caribbean Vervets.
bioRxiv 2020, 2020.06.18.157933.
http://biorxiv.org/content/early/2020/06/19/2020.06.18.157933.abstract
57. Böhmer, M. M.; Buchholz, U.; Corman, V. M.; Hoch, M.; Katz, K.; Marosevic, D. V.; Böhm, S.;
Woudenberg, T.; Ackermann, N.; Konrad, R.; Eberle, U.; Treis, B.; Dangel, A.; Bengs, K.; Fingerle, V.;
Berger, A.; Hörmansdorfer, S.; Ippisch, S.; Wicklein, B.; Grahl, A.; Pörtner, K.; Muller, N.; Zeitlmann, N.;
Boender, T. S.; Cai, W.; Reich, A.; An der Heiden, M.; Rexroth, U.; Hamouda, O.; Schneider, J.; Veith, T.;
Mühlemann, B.; Wölfel, R.; Antwerpen, M.; Walter, M.; Protzer, U.; Liebl, B.; Haas, W.; Sing, A.; Drosten,
C.; Zapf, A., Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated
primary case: a case series. The Lancet. Infectious diseases 2020, S1473-3099(20)30314-5.
https://pubmed.ncbi.nlm.nih.gov/32422201
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228725/
58. Boni, M. F.; Lemey, P.; Jiang, X.; Lam, T. T.-Y.; Perry, B. W.; Castoe, T. A.; Rambaut, A.; Robertson, D.
L., Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic.
Nature Microbiology 2020. https://doi.org/10.1038/s41564-020-0771-4
59. Bosco-Lauth, A. M.; Hartwig, A. E.; Porter, S. M.; Gordy, P. W.; Nehring, M.; Byas, A. D.;
VandeWoude, S.; Ragan, I. K.; Maison, R. M.; Bowen, R. A., Pathogenesis, transmission and response to
re-exposure of SARS-CoV-2 in domestic cats. bioRxiv 2020, 2020.05.28.120998.
http://biorxiv.org/content/early/2020/05/29/2020.05.28.120998.abstract
60. Bouaziz, J.; Duong, T.; Jachiet, M.; Velter, C.; Lestang, P.; Cassius, C.; Arsouze, A.; Domergue Than
Trong, E.; Bagot, M.; Begon, E.; Sulimovic, L.; Rybojad, M., Vascular skin symptoms in COVID-19: a french
observational study. Journal of the European Academy of Dermatology and Venereology n/a (n/a).
https://onlinelibrary.wiley.com/doi/abs/10.1111/jdv.16544
61. Boulware, D. R.; Pullen, M. F.; Bangdiwala, A. S.; Pastick, K. A.; Lofgren, S. M.; Okafor, E. C.; Skipper,
C. P.; Nascene, A. A.; Nicol, M. R.; Abassi, M.; Engen, N. W.; Cheng, M. P.; LaBar, D.; Lother, S. A.;
MacKenzie, L. J.; Drobot, G.; Marten, N.; Zarychanski, R.; Kelly, L. E.; Schwartz, I. S.; McDonald, E. G.;
Rajasingham, R.; Lee, T. C.; Hullsiek, K. H., A Randomized Trial of Hydroxychloroquine as Postexposure
Prophylaxis for Covid-19. New England Journal of Medicine 2020.
https://www.nejm.org/doi/full/10.1056/NEJMoa2016638
62. Braun, J.; Loyal, L.; Frentsch, M.; Wendisch, D.; Georg, P.; Kurth, F.; Hippenstiel, S.; Dingeldey, M.;
Kruse, B.; Fauchere, F.; Baysal, E.; Mangold, M.; Henze, L.; Lauster, R.; Mall, M.; Beyer, K.; Roehmel, J.;
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 26
Schmitz, J.; Miltenyi, S.; Mueller, M. A.; Witzenrath, M.; Suttorp, N.; Kern, F.; Reimer, U.; Wenschuh, H.;
Drosten, C.; Corman, V. M.; Giesecke-Thiel, C.; Sander, L.-E.; Thiel, A., Presence of SARS-CoV-2 reactive T
cells in COVID-19 patients and healthy donors. medRxiv 2020, 2020.04.17.20061440.
https://www.medrxiv.org/content/medrxiv/early/2020/04/22/2020.04.17.20061440.full.pdf
63. Brennan, Z., FDA issues 2nd EUA for decontamination system for N95 masks. Regulatory Focus 2020.
https://www.raps.org/news-and-articles/news-articles/2020/4/fda-issues-2nd-eua-for-
decontamination-system-for
64. Brocato, R.; Principe, L.; Kim, R.; Zeng, X.; Williams, J.; Liu, Y.; Li, R.; Smith, J.; Golden, J.; Gangemi, D.;
Youssef, S.; Wang, Z.; Glanville, J.; Hooper, J., Disruption of Adaptive Immunity Enhances Disease in
SARS-CoV-2 Infected Syrian Hamsters. bioRxiv 2020, 2020.06.19.161612.
http://biorxiv.org/content/early/2020/06/19/2020.06.19.161612.abstract
65. Brosseau, L. M., COMMENTARY: COVID-19 transmission messages should hinge on science.
http://www.cidrap.umn.edu/news-perspective/2020/03/commentary-covid-19-transmission-messages-
should-hinge-science.
66. Brosseau, L. M.; Jones, R., Commentary: Protecting health workers from airborne MERS-CoV -
learning from SARS.
http://www.cidrap.umn.edu/news-perspective/2014/05/commentary-protecting-
health-workers-airborne-mers-cov-learning-sars.
67. Bryner, J., First US infant death linked to COVID-19 reported in Illinois. LiveScience 2020.
https://www.livescience.com/us-infant-dies-coronavirus.html
68. Burbelo, P. D.; Riedo, F. X.; Morishima, C.; Rawlings, S.; Smith, D.; Das, S.; Strich, J. R.; Chertow, D. S.;
Davey, R. T.; Cohen, J. I., Detection of Nucleocapsid Antibody to SARS-CoV-2 is More Sensitive than
Antibody to Spike Protein in COVID-19 Patients. J Infect Dis 2020.
69. Burke, R. M., Active monitoring of persons exposed to patients with confirmed COVID-19United
States, JanuaryFebruary 2020. MMWR. Morbidity and mortality weekly report 2020, 69.
70. Burrer, S. L.; de Perio, M. A.; Hughes, M. M.; Kuhar, D. T.; Luckhaupt, S. E.; McDaniel, C. J.; Porter, R.
M.; Silk, B.; Stuckey, M. J.; Walters, M., Characteristics of health care personnel with COVID-19United
States, February 12April 9, 2020. 2020.
71. Byambasuren, O.; Cardona, M.; Bell, K.; Clark, J.; McLaws, M.-L.; Glasziou, P., Estimating the extent of
true asymptomatic COVID-19 and its potential for community transmission: systematic review and
meta-analysis. Available at SSRN 3586675 2020.
72. Cagliani, R.; Forni, D.; Clerici, M.; Sironi, M., Computational inference of selection underlying the
evolution of the novel coronavirus, SARS-CoV-2. Journal of Virology 2020, JVI.00411-20.
https://jvi.asm.org/content/jvi/early/2020/03/27/JVI.00411-20.full.pdf
73. Cagliani, R.; Forni, D.; Clerici, M.; Sironi, M., Computational inference of selection underlying the
evolution of the novel coronavirus, SARS-CoV-2. J Virol 2020.
74. Callow, K.; Parry, H.; Sergeant, M.; Tyrrell, D., The time course of the immune response to
experimental coronavirus infection of man. Epidemiology & Infection 1990, 105 (2), 435-446.
75. Cantini, F.; Niccoli, L.; Nannini, C.; Matarrese, D.; Natale, M. E. D.; Lotti, P.; Aquilini, D.; Landini, G.;
Cimolato, B.; Pietro, M. A. D.; Trezzi, M.; Stobbione, P.; Frausini, G.; Navarra, A.; Nicastri, E.; Sotgiu, G.;
Goletti, D., Retrospective, multicenter study on the impact of baricitinib in COVID-19 moderate
pneumonia. J Infect 2020.
76. Canziani, L. M.; Trovati, S.; Brunetta, E.; Testa, A.; De Santis, M.; Bombardieri, E.; Guidelli, G.; Albano,
G.; Folci, M.; Squadroni, M.; Beretta, G. D.; Ciccarelli, M.; Castoldi, M.; Lleo, A.; Aghemo, A.; Vernile, L.;
Malesci, A.; Omodei, P.; Angelini, C.; Badalamenti, S.; Cecconi, M.; Cremonesi, A.; Selmi, C., Interleukin-6
receptor blocking with intravenous tocilizumab in COVID-19 severe acute respiratory distress syndrome:
A retrospective case-control survival analysis of 128 patients. J Autoimmun 2020, 102511.
77. Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.;
Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.;
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 27
Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li,
K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.;
Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.;
Hayden, F. G.; Horby, P. W.; Zhang, D.; Wang, C., A Trial of LopinavirRitonavir in Adults Hospitalized
with Severe Covid-19. New England Journal of Medicine 2020.
https://www.nejm.org/doi/full/10.1056/NEJMoa2001282
78. Cao, W.; Liu, X.; Bai, T.; Fan, H.; Hong, K.; Song, H.; Han, Y.; Lin, L.; Ruan, L.; Li, T., High-dose
intravenous immunoglobulin as a therapeutic option for deteriorating patients with Coronavirus Disease
2019. Open Forum Infectious Diseases 2020. https://doi.org/10.1093/ofid/ofaa102
79. Cao, Y.; Wei, J.; Zou, L.; Jiang, T.; Wang, G.; Chen, L.; Huang, L.; Meng, F.; Huang, L.; Wang, N.; Zhou,
X.; Luo, H.; Mao, Z.; Chen, X.; Xie, J.; Liu, J.; Cheng, H.; Zhao, J.; Huang, G.; Wang, W.; Zhou, J., Ruxolitinib
in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized
controlled trial. Journal of Allergy and Clinical Immunology 2020.
http://www.sciencedirect.com/science/article/pii/S0091674920307387
80. Carfì, A.; Bernabei, R.; Landi, F.; Group, f. t. G. A. C.-P.-A. C. S., Persistent Symptoms in Patients After
Acute COVID-19. JAMA 2020. https://doi.org/10.1001/jama.2020.12603
81. Casadevall, A.; Pirofski, L.-a., The convalescent sera option for containing COVID-19. The Journal of
Clinical Investigation 2020, 130 (4). https://doi.org/10.1172/JCI138003
82. Casey, M.; Griffin, J.; McAloon, C. G.; Byrne, A. W.; Madden, J. M.; McEvoy, D.; Collins, A. B.; Hunt, K.;
Barber, A.; Butler, F.; Lane, E. A.; O Brien, K.; Wall, P.; Walsh, K. A.; More, S. J., Estimating pre-
symptomatic transmission of COVID-19: a secondary analysis using published data. medRxiv 2020,
2020.05.08.20094870.
https://www.medrxiv.org/content/medrxiv/early/2020/05/11/2020.05.08.20094870.full.pdf
83. Cauchois, R.; Koubi, M.; Delarbre, D.; Manet, C.; Carvelli, J.; Blasco, V. B.; Jean, R.; Fouche, L.; Bornet,
C.; Pauly, V.; Mazodier, K.; Pestre, V.; Jarrot, P.-A.; Dinarello, C. A.; Kaplanski, G., Early IL-1 receptor
blockade in severe inflammatory respiratory failure complicating COVID-19. Proceedings of the National
Academy of Sciences 2020, 202009017.
http://www.pnas.org/content/early/2020/07/21/2009017117.abstract
84. Cavalcanti, A. B.; Zampieri, F. G.; Rosa, R. G.; Azevedo, L. C. P.; Veiga, V. C.; Avezum, A.; Damiani, L.
P.; Marcadenti, A.; Kawano-Dourado, L.; Lisboa, T.; Junqueira, D. L. M.; de Barros e Silva, P. G. M.;
Tramujas, L.; Abreu-Silva, E. O.; Laranjeira, L. N.; Soares, A. T.; Echenique, L. S.; Pereira, A. J.; Freitas, F. G.
R.; Gebara, O. C. E.; Dantas, V. C. S.; Furtado, R. H. M.; Milan, E. P.; Golin, N. A.; Cardoso, F. F.; Maia, I. S.;
Hoffmann Filho, C. R.; Kormann, A. P. M.; Amazonas, R. B.; Bocchi de Oliveira, M. F.; Serpa-Neto, A.;
Falavigna, M.; Lopes, R. D.; Machado, F. R.; Berwanger, O., Hydroxychloroquine with or without
Azithromycin in Mild-to-Moderate Covid-19. New England Journal of Medicine 2020.
https://www.nejm.org/doi/full/10.1056/NEJMoa2019014
85. CDC, 2019 Novel Coronavirus RT-PCR Identification Protocols.
https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-detection-instructions.html
.
86. CDC, CDC launches national viral genomics consortium to better map SARS-CoV-2 transmission.
Centers for Disease Control and Prevention: 2020.
https://www.cdc.gov/media/releases/2020/p0501-
SARS-CoV-2-transmission-map.html
87. CDC, Confirmation of COVID-19 in Two Pet Cats in New York. Centers for Disease Control and
Prevention: 2020. https://www.cdc.gov/media/releases/2020/s0422-covid-19-cats-NYC.html
88. CDC, Confirmed 2019-nCoV Cases Globally. https://www.cdc.gov/coronavirus/2019-ncov/locations-
confirmed-cases.html.
89. CDC, COVID-19 Forecasts. https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-
us.html.
90. CDC, COVIDview. https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html.
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 28
91. CDC, Interim healthcare infection prevention and control recommendations for patients under
investigation for 2019 novel coronavirus.
https://www.cdc.gov/coronavirus/2019-ncov/infection-
control.html.
92. CDC, Overview of Testing for SARS-CoV-2. https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing-
overview.html.
93. CDC, Recommendation Regarding the Use of Cloth Face Coverings, Especially in Areas of Significant
Community-Based Transmission. 2020.
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-
sick/cloth-face-cover.html
94. CDC, Situation summary. https://www.cdc.gov/coronavirus/2019-nCoV/summary.html.
95. CDC, Symptoms of Coronavirus. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-
testing/symptoms.html.
96. CDC, C., China's CDC detects a large number of new coronaviruses in the South China seafood
market in Wuhan http://www.chinacdc.cn/yw_9324/202001/t20200127_211469.html
(accessed
01/27/2020).
97. CEID, Nowcasts for the US, states, and territories. http://2019-coronavirus-
tracker.com/nowcast.html.
98. Ceraolo, C.; Giorgi, F. M., Genomic variance of the 2019-nCoV coronavirus. J Med Virol 2020, 92 (5),
522-528.
99. Chan, J. F.-W.; Yuan, S.; Kok, K.-H.; To, K. K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C. C.-Y.; Poon, R.
W.-S.; Tsoi, H.-W.; Lo, S. K.-F.; Chan, K.-H.; Poon, V. K.-M.; Chan, W.-M.; Ip, J. D.; Cai, J.-P.; Cheng, V. C.-
C.; Chen, H.; Hui, C. K.-M.; Yuen, K.-Y., A familial cluster of pneumonia associated with the 2019 novel
coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet 2020.
https://www.sciencedirect.com/science/article/pii/S0140673620301549
100. Chan, J. F.; Zhang, A. J.; Yuan, S.; Poon, V. K.; Chan, C. C.; Lee, A. C.; Chan, W. M.; Fan, Z.; Tsoi, H. W.;
Wen, L.; Liang, R.; Cao, J.; Chen, Y.; Tang, K.; Luo, C.; Cai, J. P.; Kok, K. H.; Chu, H.; Chan, K. H.; Sridhar, S.;
Chen, Z.; Chen, H.; To, K. K.; Yuen, K. Y., Simulation of the clinical and pathological manifestations of
Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease
pathogenesis and transmissibility. Clin Infect Dis 2020.
https://www.ncbi.nlm.nih.gov/pubmed/32215622
101. Chande, A. T.; Gussler, W.; Harris, M.; Lee, S.; Rishishwar, L.; Jordan, I. K.; Andris, C. M.; Weitz, J. S.,
Interactive COVID-19 Event Risk Assessment Planning Tool. http://covid19risk.biosci.gatech.edu/
.
102. Chandrashekar, A.; Liu, J.; Martinot, A. J.; McMahan, K.; Mercado, N. B.; Peter, L.; Tostanoski, L. H.;
Yu, J.; Maliga, Z.; Nekorchuk, M.; Busman-Sahay, K.; Terry, M.; Wrijil, L. M.; Ducat, S.; Martinez, D. R.;
Atyeo, C.; Fischinger, S.; Burke, J. S.; Slein, M. D.; Pessaint, L.; Van Ry, A.; Greenhouse, J.; Taylor, T.;
Blade, K.; Cook, A.; Finneyfrock, B.; Brown, R.; Teow, E.; Velasco, J.; Zahn, R.; Wegmann, F.; Abbink, P.;
Bondzie, E. A.; Dagotto, G.; Gebre, M. S.; He, X.; Jacob-Dolan, C.; Kordana, N.; Li, Z.; Lifton, M. A.;
Mahrokhian, S. H.; Maxfield, L. F.; Nityanandam, R.; Nkolola, J. P.; Schmidt, A. G.; Miller, A. D.; Baric, R.
S.; Alter, G.; Sorger, P. K.; Estes, J. D.; Andersen, H.; Lewis, M. G.; Barouch, D. H., SARS-CoV-2 infection
protects against rechallenge in rhesus macaques. Science 2020, eabc4776.
https://science.sciencemag.org/content/sci/early/2020/05/19/science.abc4776.full.pdf
103. Changzheng, L. J. L., Experts in the medical treatment team: Wuhan's unexplained viral pneumonia
patients can be controlled more.
https://www.cn-healthcare.com/article/20200110/content-
528579.html.
104. Chen, C.-P.; Lin, Y.-C.; Chen, T.-C.; Tseng, T.-Y.; Wong, H.-L.; Kuo, C.-Y.; Lin, W.-P.; Huang, S.-R.;
Wang, W.-Y.; Liao, J.-H.; Liao, C.-S.; Hung, Y.-P.; Lin, T.-H.; Chang, T.-Y.; Hsiao, C.-F.; Huang, Y.-W.; Chung,
W.-S.; Cheng, C.-Y.; Cheng, S.-H., A Multicenter, randomized, open-label, controlled trial to evaluate the
efficacy and tolerability of hydroxychloroquine and a retrospective study in adult patients with mild to
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 29
moderate Coronavirus disease 2019 (COVID-19). medRxiv 2020, 2020.07.08.20148841.
http://medrxiv.org/content/early/2020/07/10/2020.07.08.20148841.abstract
105. Chen, C.; Cao, M.; Peng, L.; Guo, X.; Yang, F.; Wu, W.; Chen, L.; Yang, Y.; Liu, Y.; Wang, F.,
Coronavirus Disease-19 Among Children Outside Wuhan, China. SSRN 2020.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3546071
106. Chen, C.; Huang, J.; Cheng, Z.; Wu, J.; Chen, S.; Zhang, Y.; Chen, B.; Lu, M.; Luo, Y.; Zhang, J.; Yin, P.;
Wang, X., Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. medRxiv 2020,
2020.03.17.20037432.
https://www.medrxiv.org/content/medrxiv/early/2020/03/20/2020.03.17.20037432.full.pdf
107. Chen, H.; Guo, J.; Wang, C.; Luo, F.; Yu, X.; Zhang, W.; Li, J.; Zhao, D.; Xu, D.; Gong, Q., Clinical
characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant
women: a retrospective review of medical records. The Lancet 2020, 395 (10226), 809-815.
108. Chen, J. H.-K.; Yip, C. C.-Y.; Poon, R. W.-S.; Chan, K.-H.; Cheng, V. C.-C.; Hung, I. F.-N.; Chan, J. F.-W.;
Yuen, K.-Y.; To, K. K.-W., Evaluating the use of posterior oropharyngeal saliva in a point-of-care assay for
the detection of SARS-CoV-2. Emerging Microbes & Infections 2020, 1-14.
https://doi.org/10.1080/22221751.2020.1775133
109. CHEN Jun, L. D., LIU Li, LIU Ping, XU Qingnian, XIA Lu, LING Yun, HUANG Dan, SONG Shuli, ZHANG
Dandan, QIAN Zhiping, LI Tao, SHEN Yinzhong, LU Hongzhou, A pilot study of hydroxychloroquine in
treatment of patients with moderate COVID-19. J Zhejiang Univ (Med Sci) 2020, 49 (2), 215-219.
http://www.zjujournals.com/med/EN/10.3785/j.issn.1008-9292.2020.03.03
110. Chen, L.; Li, Q.; Zheng, D.; Jiang, H.; Wei, Y.; Zou, L.; Feng, L.; Xiong, G.; Sun, G.; Wang, H.; Zhao, Y.;
Qiao, J., Clinical Characteristics of Pregnant Women with Covid-19 in Wuhan, China. New England
Journal of Medicine 2020. https://www.nejm.org/doi/full/10.1056/NEJMc2009226
111. Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.;
Zhang, X.; Zhang, L., Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus
pneumonia in Wuhan, China: a descriptive study. Lancet 2020.
https://www.ncbi.nlm.nih.gov/pubmed/32007143
112. Chen, Y.; Peng, H.; Wang, L.; Zhao, Y.; Zeng, L.; Gao, H.; Liu, Y., Infants Born to Mothers With a New
Coronavirus (COVID-19). Frontiers in Pediatrics 2020, 8 (104).
https://www.frontiersin.org/article/10.3389/fped.2020.00104
113. Chen, Z.; Hu, J.; Zhang, Z.; Jiang, S.; Han, S.; Yan, D.; Zhuang, R.; Hu, B.; Zhang, Z., Efficacy of
hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv 2020,
2020.03.22.20040758.
https://www.medrxiv.org/content/medrxiv/early/2020/04/10/2020.03.22.20040758.full.pdf
114. Cheng, H.-Y.; Jian, S.-W.; Liu, D.-P.; Ng, T.-C.; Huang, W.-T.; Lin, H.-H.; Team, f. t. T. C.-O. I., Contact
Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure
Periods Before and After Symptom Onset. JAMA Internal Medicine 2020.
https://doi.org/10.1001/jamainternmed.2020.2020
115. Cheruiyot, I.; Henry, B. M.; Lippi, G., Is there evidence of intra-uterine vertical transmission
potential of COVID-19 infection in samples tested by quantitative RT-PCR? Eur J Obstet Gynecol Reprod
Biol 2020.
116. Chhatwal, J.; Ayer, T.; Linas, B. P. D., O. O.; Mueller, P.; Adee, M.; Ladd, M. A.; Xiao, J. Y. X., COVID-
19. https://www.covid19sim.org/
.
117. Chicago, Forecasting for Illinois SARS-CoV-2 model.
https://github.com/cobeylab/covid_IL/tree/master/Forecasting
.
118. Chin, A.; Chu, J.; Perera, M.; Hui, K.; Yen, H.-L.; Chan, M.; Peiris, M.; Poon, L., Stability of SARS-CoV-2
in different environmental conditions. medRxiv 2020, 2020.03.15.20036673.
https://www.medrxiv.org/content/medrxiv/early/2020/03/27/2020.03.15.20036673.full.pdf
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 30
119. Chin, A. W. H.; Chu, J. T. S.; Perera, M. R. A.; Hui, K. P. Y.; Yen, H.-L.; Chan, M. C. W.; Peiris, M.; Poon,
L. L. M., Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe.
https://doi.org/10.1016/S2666-5247(20)30003-3
120. Chivese, T.; Musa, O. A. H.; Hindy, G.; Wattary, N.; Badran, S.; Soliman, N.; Aboughalia, A. T. M.;
Matizanadzo, J. T.; Emara, M. M.; Thalib, L.; Doi, S., A meta-review of systematic reviews and an updated
meta-analysis on the efficacy of chloroquine and hydroxychloroquine in treating COVID19 infection.
medRxiv 2020, 2020.07.28.20164012.
http://medrxiv.org/content/early/2020/07/30/2020.07.28.20164012.abstract
121. Chong, V. H.; Chong, P. L.; Metussin, D.; Asli, R.; Momin, R. N.; Mani, B. I.; Abdullah, M. S.,
Conduction abnormalities in hydroxychloroquine add on therapy to lopinavir/ritonavir in COVID-19. J
Med Virol 2020.
122. Chopra, A.; Chieng, H. C.; Austin, A.; Tiwari, A.; Mehta, S.; Nautiyal, A.; Al-Tarbsheh, A. H.; Jain, E.;
Feustel, P. J.; Shkolnik, B.; Jaitovich, A., Corticosteroid Administration Is Associated With Improved
Outcome in Patients With Severe Acute Respiratory Syndrome Coronavirus 2-Related Acute Respiratory
Distress Syndrome. Crit Care Explor 2020, 2 (6), e0143.
123. Chu, D. K.; Akl, E. A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H. J.; Chu, D. K.; Akl, E. A.; El-
harakeh, A.; Bognanni, A.; Lotfi, T.; Loeb, M.; Hajizadeh, A.; Bak, A.; Izcovich, A.; Cuello-Garcia, C. A.;
Chen, C.; Harris, D. J.; Borowiack, E.; Chamseddine, F.; Schünemann, F.; Morgano, G. P.; Muti
Schünemann, G. E. U.; Chen, G.; Zhao, H.; Neumann, I.; Chan, J.; Khabsa, J.; Hneiny, L.; Harrison, L.;
Smith, M.; Rizk, N.; Giorgi Rossi, P.; AbiHanna, P.; El-khoury, R.; Stalteri, R.; Baldeh, T.; Piggott, T.; Zhang,
Y.; Saad, Z.; Khamis, A.; Reinap, M.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H. J., Physical
distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and
COVID-19: a systematic review and meta-analysis. The Lancet 2020.
https://doi.org/10.1016/S0140-
6736(20)31142-9
124. Chughtai, A. A.; Seale, H.; MacIntyre, C. R., Use of cloth masks in the practice of infection control
evidence and policy gaps. Int J Infect Control 2013, 9 (3), doi: 10.3396/IJIC.v9i3.020.13.
125. Cockrell, A. S.; Yount, B. L.; Scobey, T.; Jensen, K.; Douglas, M.; Beall, A.; Tang, X.-C.; Marasco, W. A.;
Heise, M. T.; Baric, R. S., A mouse model for MERS coronavirus-induced acute respiratory distress
syndrome. Nature microbiology 2016, 2 (2), 1-11.
126. Cohen, J., Mining coronavirus genomes for clues to the outbreak’s origins. Science 2020.
https://www.sciencemag.org/news/2020/01/mining-coronavirus-genomes-clues-outbreak-s-origins
127. Cohen, J., Wuhan seafood market may not be source of novel virus spreading globally.
https://www.sciencemag.org/news/2020/01/wuhan-seafood-market-may-not-be-source-novel-virus-
spreading-globally (accessed 01/27/2020).
128. Control), E. E. C. f. D. P. a., Interim guidance for environmental cleaning in non-healthcare facilities
exposed to SARS-CoV-2; European Centre for Disease Prevention and Control: European Centre for
Disease Prevention and Control, 2020.
https://www.ecdc.europa.eu/en/publications-data/interim-
guidance-environmental-cleaning-non-healthcare-facilities-exposed-2019#no-link
129. Corman, V. M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D. K.; Bleicker, T.; Brunink, S.;
Schneider, J.; Schmidt, M. L.; Mulders, D. G.; Haagmans, B. L.; van der Veer, B.; van den Brink, S.;
Wijsman, L.; Goderski, G.; Romette, J. L.; Ellis, J.; Zambon, M.; Peiris, M.; Goossens, H.; Reusken, C.;
Koopmans, M. P.; Drosten, C., Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR.
Euro Surveill 2020, 25 (3). https://www.ncbi.nlm.nih.gov/pubmed/31992387
130. Corral, L.; Bahamonde, A.; Arnaiz delas Revillas, F.; Gomez-Barquero, J.; Abadia-Otero, J.; Garcia-
Ibarbia, C.; Mora, V.; cerezo-hernandez, A.; Hernandez, J. L.; Lopez-Muniz, G.; Hernandez-Blanco, F.;
Cifrian, J. M.; Olmos, J. M.; Carrascosa, M.; farinas, m. C.; Riancho, J. A., GLUCOCOVID: A controlled trial
of methylprednisolone in adults hospitalized with COVID-19 pneumonia. medRxiv 2020,
2020.06.17.20133579. http://medrxiv.org/content/early/2020/06/18/2020.06.17.20133579.abstract
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 31
131. Courtemanche, C.; Garuccio, J.; Le, A.; Pinkston, J.; Yelowitz, A., Strong Social Distancing Measures
In The United States Reduced The COVID-19 Growth Rate. Health Affairs 2020,
10.1377/hlthaff.2020.00608. https://doi.org/10.1377/hlthaff.2020.00608
132. Coutard, B.; Valle, C.; de Lamballerie, X.; Canard, B.; Seidah, N.; Decroly, E., The spike glycoprotein
of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade.
Antiviral research 2020, 176, 104742.
133. Cowling, B. J.; Ali, S. T.; Ng, T. W. Y.; Tsang, T. K.; Li, J. C. M.; Fong, M. W.; Liao, Q.; Kwan, M. Y.; Lee,
S. L.; Chiu, S. S.; Wu, J. T.; Wu, P.; Leung, G. M., Impact assessment of non-pharmaceutical interventions
against COVID-19 and influenza in Hong Kong: an observational study. medRxiv 2020,
2020.03.12.20034660.
https://www.medrxiv.org/content/medrxiv/early/2020/03/16/2020.03.12.20034660.full.pdf
134. Creel-Bulos, C.; Hockstein, M.; Amin, N.; Melhem, S.; Truong, A.; Sharifpour, M., Acute Cor
Pulmonale in Critically Ill Patients with Covid-19. New England Journal of Medicine 2020, e70.
https://www.nejm.org/doi/full/10.1056/NEJMc2010459
135. CureVac, A Study to Evaluate the Safety, Reactogenicity and Immunogenicity of Vaccine CVnCoV in
Healthy Adults. https://clinicaltrials.gov/ct2/show/NCT04449276?term=Curevac&draw=2&rank=2
.
136. Czeisler, M. E.; Tynan, M. A.; Howard, M. E.; al., e., Public Attitudes, Behaviors, and Beliefs Related
to COVID-19, Stay-at-Home Orders, Nonessential Business Closures, and Public Health Guidance
United States, New York City, and Los Angeles, May 512, 2020. Morbidity and Mortality Weekly Report
2020, 12 June 2020. https://www.cdc.gov/mmwr/volumes/69/wr/mm6924e1.htm#suggestedcitation
137. Daily, H., Wuhan Institute of Virology, Chinese Academy of Sciences and others have found that 3
drugs have a good inhibitory effect on new coronavirus. Chen, L., Ed. 2020.
http://news.cnhubei.com/content/2020-01/28/content_12656365.html
138. Dandekar, R.; Barbastathis, G., Neural Network aided quarantine control model estimation of global
Covid-19 spread. arXiv preprint arXiv:2004.02752 2020.
139. Dato, V. M.; Hostler, D.; Hahn, M. E., Simple respiratory mask. Emerg Infect Dis 2006, 12 (6), 1033-
4. https://www.ncbi.nlm.nih.gov/pubmed/16752475
140. Davies, A.; Thompson, K. A.; Giri, K.; Kafatos, G.; Walker, J.; Bennett, A., Testing the efficacy of
homemade masks: would they protect in an influenza pandemic? Disaster Med Public Health Prep 2013,
7 (4), 413-8. https://www.ncbi.nlm.nih.gov/pubmed/24229526
141. Davoudi-Monfared, E.; Rahmani, H.; Khalili, H.; Hajiabdolbaghi, M.; Salehi, M.; Abbasian, L.;
Kazemzadeh, H.; Yekaninejad, M. S., Efficacy and safety of interferon beta-1a in treatment of severe
COVID-19: A randomized clinical trial. medRxiv 2020, 2020.05.28.20116467.
https://www.medrxiv.org/content/medrxiv/early/2020/05/30/2020.05.28.20116467.full.pdf
142. De Albuquerque, N.; Baig, E.; Ma, X.; Zhang, J.; He, W.; Rowe, A.; Habal, M.; Liu, M.; Shalev, I.;
Downey, G. P.; Gorczynski, R.; Butany, J.; Leibowitz, J.; Weiss, S. R.; McGilvray, I. D.; Phillips, M. J.; Fish, E.
N.; Levy, G. A., Murine hepatitis virus strain 1 produces a clinically relevant model of severe acute
respiratory syndrome in A/J mice. J Virol 2006, 80 (21), 10382-94.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1641767/pdf/0747-06.pdf
143. de Haan, C. A. M.; Haijema, B. J.; Schellen, P.; Schreur, P. W.; te Lintelo, E.; Vennema, H.; Rottier, P.
J. M., Cleavage of Group 1 Coronavirus Spike Proteins: How Furin Cleavage Is Traded Off against Heparan
Sulfate Binding upon Cell Culture Adaptation. Journal of Virology 2008, 82 (12), 6078-6083.
https://jvi.asm.org/content/jvi/82/12/6078.full.pdf
144. Dediego, M. L.; Pewe, L.; Alvarez, E.; Rejas, M. T.; Perlman, S.; Enjuanes, L., Pathogenicity of severe
acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice. Virology 2008, 376 (2), 379-
389. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810402/
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 32
145. Degesys, N. F.; Wang, R. C.; Kwan, E.; Fahimi, J.; Noble, J. A.; Raven, M. C., Correlation Between N95
Extended Use and Reuse and Fit Failure in an Emergency Department. JAMA 2020.
https://doi.org/10.1001/jama.2020.9843
146. Deng, C., China to Fast-Track Coronavirus Vaccine Trial Based on Advanced Genetics Technology
https://www.wsj.com/articles/china-to-fast-track-coronavirus-vaccine-trial-based-on-advanced-
genetics-technology-11593180841.
147. Deng, W.; Bao, L.; Gao, H.; Xiang, Z.; Qu, Y.; Song, Z.; Gong, S.; Liu, J.; Liu, J.; Yu, P.; Qi, F.; Xu, Y.; Li,
F.; Xiao, C.; Lv, Q.; Xue, J.; Wei, Q.; Liu, M.; Wang, G.; Wang, S.; Yu, H.; Liu, X.; Zhao, W.; Han, Y.; Qin, C.,
Ocular conjunctival inoculation of SARS-CoV-2 can cause mild COVID-19 in Rhesus macaques. bioRxiv
2020.
148. Deng, W.; Bao, L.; Liu, J.; Xiao, C.; Liu, J.; Xue, J.; Lv, Q.; Qi, F.; Gao, H.; Yu, P.; Xu, Y.; Qu, Y.; Li, F.;
Xiang, Z.; Yu, H.; Gong, S.; Liu, M.; Wang, G.; Wang, S.; Song, Z.; Liu, Y.; Zhao, W.; Han, Y.; Zhao, L.; Liu, X.;
Wei, Q.; Qin, C., Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques.
Science 2020, eabc5343.
https://science.sciencemag.org/content/sci/early/2020/07/01/science.abc5343.full.pdf
149. Deng, X.; Gu, W.; Federman, S.; du Plessis, L.; Pybus, O. G.; Faria, N.; Wang, C.; Yu, G.; Bushnell, B.;
Pan, C.-Y.; Guevara, H.; Sotomayor-Gonzalez, A.; Zorn, K.; Gopez, A.; Servellita, V.; Hsu, E.; Miller, S.;
Bedford, T.; Greninger, A. L.; Roychoudhury, P.; Starita, L. M.; Famulare, M.; Chu, H. Y.; Shendure, J.;
Jerome, K. R.; Anderson, C.; Gangavarapu, K.; Zeller, M.; Spencer, E.; Andersen, K. G.; MacCannell, D.;
Paden, C. R.; Li, Y.; Zhang, J.; Tong, S.; Armstrong, G.; Morrow, S.; Willis, M.; Matyas, B. T.; Mase, S.;
Kasirye, O.; Park, M.; Masinde, G.; Chan, C.; Yu, A. T.; Chai, S. J.; Villarino, E.; Bonin, B.; Wadford, D. A.;
Chiu, C. Y., Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California.
Science 2020, eabb9263.
https://science.sciencemag.org/content/sci/early/2020/06/05/science.abb9263.full.pdf
150. Deslandes, A.; Berti, V.; Tandjaoui-Lambotte, Y.; Alloui, C.; Carbonnelle, E.; Zahar, J. R.; Brichler, S.;
Cohen, Y., SARS-CoV-2 was already spreading in France in late December 2019. International Journal of
Antimicrobial Agents 2020, 106006.
http://www.sciencedirect.com/science/article/pii/S0924857920301643
151. DHS, Estimated Airborne Decay of SARS-CoV-2. https://www.dhs.gov/science-and-technology/sars-
airborne-calculator.
152. DHS, Estimated Natural Decay of SARS-CoV-2 (virus that causes COVID-19)
on surfaces under a range of temperatures and relative humidity.
https://www.dhs.gov/science-and-
technology/sars-calculator.
153. Donato, M.; Park, S.; Baker, M.; Korngold, R.; Morawski, A.; Geng, X.; Tan, M. T.; Rowley, S.; Chow,
K.; Brown, E.; Zenreich, J.; McKiernan, P.; Buttner, K.; Ullrich, A.; Long, L.; Kemp, M.; Vendivil, M.;
Ricourt, A.; Feinman, R.; Suh, H.; Bindu, B.; Cicogna, C.; Sebti, R.; Al-Khan, A.; Sperber, S.; Desai, S.;
Fanning, S.; Arad, D.; Go, R.; Tam, E.; Rose, K.; Sadikot, S.; Siegel, D. S.; Gutierrez, M.; Ip, A.; Goldberg, S.;
Feldman, T.; Goy, A.; Pecora, A.; Biran, N.; Leslie, L.; Gillio, A.; Timmapuri, S.; Boonstra, M.; Singer, S.;
Kaur, S.; Richards, E.; Perlin, D., Clinical and laboratory evaluation of patients with SARS-CoV-2
pneumonia treated with high-titer convalescent plasma: a prospective study. medRxiv 2020,
2020.07.20.20156398. http://medrxiv.org/content/early/2020/07/26/2020.07.20.20156398.abstract
154. Dong, N.; Yang, X.; Ye, L.; Chen, K.; Chan, E. W.-C.; Yang, M.; Chen, S., Genomic and protein
structure modelling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which
caused a pneumonia outbreak in Wuhan, China. bioRxiv 2020, 2020.01.20.913368.
https://www.biorxiv.org/content/biorxiv/early/2020/01/22/2020.01.20.913368.full.pdf
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 33
155. Dong, Y.; Mo, X.; Hu, Y.; Qi, X.; Jiang, F.; Jiang, Z.; Tong, S., Epidemiological Characteristics of 2143
Pediatric Patients With 2019 Coronavirus Disease in China. Pediatrics 2020, e20200702.
https://pediatrics.aappublications.org/content/pediatrics/early/2020/03/16/peds.2020-0702.full.pdf
156. Dong, Y.; Mo, X.; Hu, Y.; Qi, X.; Jiang, F.; Jiang, Z.; Tong, S., Epidemiology of COVID-19 Among
Children in China. Pediatrics 2020, 145 (6), e20200702.
https://pediatrics.aappublications.org/content/pediatrics/145/6/e20200702.full.pdf
157. Du, Z.; Xu, X.; Wang, L.; Fox, S. J.; Cowling, B. J.; Galvani, A. P.; Meyers, L. A., Effects of Proactive
Social Distancing on COVID-19 Outbreaks in 58 Cities, China. Emerg Infect Dis 2020, 26 (9).
158. Du, Z.; Xu, x.; Wu, Y.; Wang, L.; Cowling, B. J.; Meyers, L. A., COVID-19 serial interval estimates
based on confirmed cases in public reports from 86 Chinese cities. medRxiv 2020, 2020.04.23.20075796.
https://www.medrxiv.org/content/medrxiv/early/2020/04/27/2020.04.23.20075796.full.pdf
159. Du, Z.; Xu, X.; Wu, Y.; Wang, L.; Cowling, B. J.; Meyers, L. A., The serial interval of COVID-19 from
publicly reported confirmed cases. medRxiv 2020, 2020.02.19.20025452.
https://www.medrxiv.org/content/medrxiv/early/2020/03/13/2020.02.19.20025452.full.pdf
160. Duan, S.; Zhao, X.; Wen, R.; Huang, J.-j.; Pi, G.; Zhang, S.; Han, J.; Bi, S.; Ruan, L.; Dong, X.-p., Stability
of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV
irradiation. Biomedical and environmental sciences: BES 2003, 16 (3), 246-255.
161. Dweck, M. R.; Bularga, A.; Hahn, R. T.; Bing, R.; Lee, K. K.; Chapman, A. R.; White, A.; Salvo, G. D.;
Sade, L. E.; Pearce, K.; Newby, D. E.; Popescu, B. A.; Donal, E.; Cosyns, B.; Edvardsen, T.; Mills, N. L.;
Haugaa, K., Global evaluation of echocardiography in patients with COVID-19. European Heart Journal -
Cardiovascular Imaging 2020. https://doi.org/10.1093/ehjci/jeaa178
162. Edridge, A. W. D.; Kaczorowska, J.; Hoste, A. C. R.; Bakker, M.; Klein, M.; Jebbink, M. F.; Matser, A.;
Kinsella, C. M.; Rueda, P.; Prins, M.; Sastre, P.; Deijs, M.; Hoek, L. v. d., Coronavirus protective immunity
is short-lasting Pre-print 2020.
https://www.medrxiv.org/content/10.1101/2020.05.11.20086439v2.full.pdf
163. Eikenberry, S. E.; Mancuso, M.; Iboi, E.; Phan, T.; Eikenberry, K.; Kuang, Y.; Kostelich, E.; Gumel, A.
B., To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the
COVID-19 pandemic. Infectious Disease Modelling 2020.
164. Ellinghaus, D.; Degenhardt, F.; Bujanda, L.; al., e., Genomewide Association Study of Severe Covid-
19 with Respiratory Failure. N Engl J Med 2020.
165. Ellington, S., Characteristics of Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2
Infection by Pregnancy StatusUnited States, January 22June 7, 2020. MMWR. Morbidity and
Mortality Weekly Report 2020, 69.
https://www.cdc.gov/mmwr/volumes/69/wr/mm6925a1.htm?s_cid=mm6925a1_w
166. Endeman, H.; van der Zee, P.; van Genderen, M. E.; van den Akker, J. P. C.; Gommers, D.,
Progressive respiratory failure in COVID-19: a hypothesis. The Lancet Infectious Diseases 2020.
https://doi.org/10.1016/S1473-3099(20)30366-2
167. Endo, A.; Abbott, S.; Kucharski, A.; Funk, S., Estimating the overdispersion in COVID-19 transmission
using outbreak sizes outside China [version 1; peer review: 1 approved, 1 approved with reservations].
Wellcome Open Research 2020, 5 (67). https://wellcomeopenresearch.org/articles/5-67/v1
168. Erkurt, M. A.; Sarici, A.; Berber, İ.; Kuku, İ.; Kaya, E.; Özgül, M., Life-saving effect of convalescent
plasma treatment in covid-19 disease: Clinical trial from eastern Anatolia. Transfus Apher Sci 2020,
102867.
169. Escobar, L. E.; Molina-Cruz, A.; Barillas-Mury, C., BCG vaccine protection from severe coronavirus
disease 2019 (COVID-19). Proceedings of the National Academy of Sciences 2020, 202008410.
https://www.pnas.org/content/pnas/early/2020/07/07/2008410117.full.pdf
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 34
170. ExpressPharma, Bharat Biotech starts human trials for Covaxin, India’s first COVID-19 vaccine.
https://www.expresspharma.in/latest-updates/bharat-biotech-starts-human-trials-for-covaxin-indias-
first-covid-19-vaccine/.
171. FDA, Coronavirus (COVID-19) Update: FDA Revokes Emergency Use Authorization for Chloroquine
and Hydroxychloroquine. U.S. Food and Drug Administration: 2020.
https://www.fda.gov/news-
events/press-announcements/coronavirus-covid-19-update-fda-revokes-emergency-use-authorization-
chloroquine-and
172. FDA, Emergency Use Authorization; Food and Drug Administration: 2020.
https://www.fda.gov/media/137886/download
173. FDA, FAQs on Shortages of Surgical Masks and Gowns. https://www.fda.gov/medical-
devices/personal-protective-equipment-infection-control/faqs-shortages-surgical-masks-and-
gowns#kn95.
174. FDA, FAQs on Testing for SARS-CoV-2. https://www.fda.gov/medical-devices/emergency-situations-
medical-devices/faqs-testing-sars-cov-2#nolonger.
175. FDA, ID NOW COVID-19; Food and Drug Administration: 2020.
https://www.fda.gov/media/136525/download
176. FDA, Investigational COVID-19 Convalescent Plasma - Emergency INDs; Food and Drug
Administration: 2020.
https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-
device-exemption-ide-process-cber/investigational-covid-19-convalescent-plasma-emergency-inds
177. FDA, Policy for Diagnostics Testing in Laboratories Certified to Perform High Complexity Testing
under CLIA prior to Emergency Use Authorization for Coronavirus Disease-2019 during the Public Health
Emergency; Immediately in Effect Guidance for Industry and Food and Drug Administration Staff. 2020.
https://www.regulations.gov/docket?D=FDA-2020-D-0987
178. FDA, Respirator Models Removed from Appendix A.
https://www.fda.gov/media/137928/download
(accessed 05/15/2020).
179. Fears, A.; Klimstra, W.; Duprex, P.; Hartman, A.; Weaver, S.; Plante, K.; Mirchandani, D.; Plante, J.
A.; Aguilar, P.; Fernández, D.; Nalca, A.; Totura, A.; Dyer, D.; Kearney, B.; Lackemeyer, M.; Bohannon, J.
K.; Johnson, R.; Garry, R.; Reed, D.; Roy, C., Persistence of Severe Acute Respiratory Syndrome
Coronavirus 2 in Aerosol Suspensions. Emerging Infectious Disease journal 2020, 26 (9).
https://wwwnc.cdc.gov/eid/article/26/9/20-1806_article
180. Feldman, O.; Meir, M.; Shavit, D.; Idelman, R.; Shavit, I., Exposure to a Surrogate Measure of
Contamination From Simulated Patients by Emergency Department Personnel Wearing Personal
Protective Equipment. JAMA 2020. https://doi.org/10.1001/jama.2020.6633
181. Ferguson, N.; Laydon, D.; Nedjati-Gilani, G.; Imai, N.; Ainslie, K.; Baguelin, M.; Bhatia, S.; Boonyasiri,
A.; Cucunuba, Z.; Cuomo-Dannenburg, G.; Dighe, A.; Dorigatti, I.; Fu, H.; Gaythorpe, K.; Green, W.;
Hamlet, A.; Hinsley, W.; Okell, L.; van Elsland, S.; Thompson, H.; Verity, R.; Volz, E.; Wang, H.; Wang, Y.;
Walker, P.; Walters, C.; Winskill, P.; Whittaker, C.; Donnelly, C.; Riley, S.; Ghani, A., Impact of non-
pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand; 2020.
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-
College-COVID19-NPI-modelling-16-03-2020.pdf
182. Fernández-Ruiz, M.; López-Medrano, F.; Asín, M. A. P.-J.; de la Calle, G. M.; Bueno, H.; Caro-Teller, J.
M.; Catalán, M.; de la Calle, C.; García-García, R.; Gómez, C.; Laguna-Goya, R.; Lizasoáin, M.; Martínez-
López, J.; Origüen, J.; Pablos, J. L.; Ripoll, M.; Juan, R. S.; Trujillo, H.; Lumbreras, C.; Aguado, J. M.; the, H.
O. I. T. f. C.-G., Tocilizumab for the treatment of adult patients with severe COVID-19 pneumonia: a
single-center cohort study. Journal of Medical Virology 2020, n/a (n/a).
https://doi.org/10.1002/jmv.26308
183. Firth, J. A.; Hellewell, J.; Klepac, P.; Kissler, S. M.; Group, C. C.-W.; Kucharski, A. J.; Spurgin, L. G.,
Combining fine-scale social contact data with epidemic modelling reveals interactions between contact
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 35
tracing, quarantine, testing and physical distancing for controlling COVID-19. Preprint 2020.
https://cmmid.github.io/topics/covid19/reports/2020_05_25_firth_et_al_manuscript.pdf
184. Fischer, R.; Morris, D. H.; van Doremalen, N.; Sarchette, S.; Matson, J.; Bushmaker, T.; Yinda, C. K.;
Seifert, S.; Gamble, A.; Williamson, B.; Judson, S.; de Wit, E.; Lloyd-Smith, J.; Munster, V., Assessment of
N95 respirator decontamination and re-use for SARS-CoV-2. medRxiv 2020, 2020.04.11.20062018.
https://www.medrxiv.org/content/medrxiv/early/2020/04/24/2020.04.11.20062018.full.pdf
185. Fisher, K. A., Factors associated with cloth face covering use among adults during the COVID-19
pandemicUnited States, April and May 2020. MMWR. Morbidity and Mortality Weekly Report 2020,
69.
186. Fisman, D. N.; Greer, A. L.; Tuite, A. R., Bidirectional impact of imperfect mask use on reproduction
number of COVID-19: A next generation matrix approach. Infectious Disease Modelling 2020, 5, 405-408.
http://www.sciencedirect.com/science/article/pii/S2468042720300191
187. Fitzpatrick, J.; DeSalvo, K., Helping public health officials combat COVID-19. Google: 2020.
https://www.blog.google/technology/health/covid-19-community-mobility-reports?hl=en
188. Flahault, A.; Manetti, E.; Simonson, T.; Lee, G.; Choirat, C., COVID-19 Forecasting.
https://renkulab.shinyapps.io/COVID-19-Epidemic-Forecasting/_w_e0463e1e/#shiny-tab-about
.
189. Flannery, D. D.; Gouma, S.; Dhudasia, M. B.; Mukhopadhyay, S.; Pfeifer, M. R.; Woodford, E. C.;
Gerber, J. S.; Arevalo, C. P.; Bolton, M. J.; Weirick, M. E.; Goodwin, E. C.; Anderson, E. M.; Greenplate, A.
R.; Kim, J.; Han, N.; Pattekar, A.; Dougherty, J.; Kuthuru, O.; Mathew, D.; Baxter, A. E.; Vella, L. A.;
Weaver, J.; Verma, A.; Leite, R.; Morris, J. S.; Rader, D. J.; Elovitz, M. A.; Wherry, E. J.; Puopolo, K. M.;
Hensley, S. E., SARS-CoV-2 seroprevalence among parturient women in Philadelphia. Science
Immunology 2020, 5 (49), eabd5709.
https://immunology.sciencemag.org/content/immunology/5/49/eabd5709.full.pdf
190. Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H. J. T.; Mellan, T. A.; Coupland, H.; Whittaker, C.; Zhu, H.;
Berah, T.; Eaton, J. W.; Monod, M.; Perez-Guzman, P. N.; Schmit, N.; Cilloni, L.; Ainslie, K. E. C.; Baguelin,
M.; Boonyasiri, A.; Boyd, O.; Cattarino, L.; Cooper, L. V.; Cucunubá, Z.; Cuomo-Dannenburg, G.; Dighe, A.;
Djaafara, B.; Dorigatti, I.; van Elsland, S. L.; FitzJohn, R. G.; Gaythorpe, K. A. M.; Geidelberg, L.; Grassly, N.
C.; Green, W. D.; Hallett, T.; Hamlet, A.; Hinsley, W.; Jeffrey, B.; Knock, E.; Laydon, D. J.; Nedjati-Gilani,
G.; Nouvellet, P.; Parag, K. V.; Siveroni, I.; Thompson, H. A.; Verity, R.; Volz, E.; Walters, C. E.; Wang, H.;
Wang, Y.; Watson, O. J.; Winskill, P.; Xi, X.; Walker, P. G. T.; Ghani, A. C.; Donnelly, C. A.; Riley, S. M.;
Vollmer, M. A. C.; Ferguson, N. M.; Okell, L. C.; Bhatt, S.; Imperial College, C.-R. T., Estimating the effects
of non-pharmaceutical interventions on COVID-19 in Europe. Nature 2020.
https://doi.org/10.1038/s41586-020-2405-7
191. Folegatti, P. M.; Ewer, K. J.; Aley, P. K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.;
Bibi, S.; Bittaye, M.; Clutterbuck, E. A.; Dold, C.; Faust, S. N.; Finn, A.; Flaxman, A. L.; Hallis, B.; Heath, P.;
Jenkin, D.; Lazarus, R.; Makinson, R.; Minassian, A. M.; Pollock, K. M.; Ramasamy, M.; Robinson, H.;
Snape, M.; Tarrant, R.; Voysey, M.; Green, C.; Douglas, A. D.; Hill, A. V. S.; Lambe, T.; Gilbert, S. C.;
Pollard, A. J.; Aboagye, J.; Adams, K.; Ali, A.; Allen, E.; Allison, J. L.; Anslow, R.; Arbe-Barnes, E. H.;
Babbage, G.; Baillie, K.; Baker, M.; Baker, P.; Baleanu, I.; Ballaminut, J.; Barnes, E.; Barrett, J.; Bates, L.;
Batten, A.; Beadon, K.; Beckley, R.; Berrie, E.; Berry, L.; Beveridge, A.; Bewley, K. R.; Bijker, E. M.;
Bingham, T.; Blackwell, L.; Blundell, C. L.; Bolam, E.; Boland, E.; Borthwick, N.; Bower, T.; Boyd, A.;
Brenner, T.; Bright, P. D.; Brown-O'Sullivan, C.; Brunt, E.; Burbage, J.; Burge, S.; Buttigieg, K. R.; Byard, N.;
Cabera Puig, I.; Calvert, A.; Camara, S.; Cao, M.; Cappuccini, F.; Carr, M.; Carroll, M. W.; Carter, V.;
Cathie, K.; Challis, R. J.; Chelysheva, I.; Cho, J.-S.; Cicconi, P.; Cifuentes, L.; Clark, H.; Clark, E.; Cole, T.;
Colin-Jones, R.; Conlon, C. P.; Cook, A.; Coombes, N. S.; Cooper, R.; Cosgrove, C. A.; Coy, K.; Crocker, W.
E. M.; Cunningham, C. J.; Damratoski, B. E.; Dando, L.; Datoo, M. S.; Davies, H.; De Graaf, H.; Demissie, T.;
Di Maso, C.; Dietrich, I.; Dong, T.; Donnellan, F. R.; Douglas, N.; Downing, C.; Drake, J.; Drake-Brockman,
R.; Drury, R. E.; Dunachie, S. J.; Edwards, N. J.; Edwards, F. D. L.; Edwards, C. J.; Elias, S. C.; Elmore, M. J.;
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 36
Emary, K. R. W.; English, M. R.; Fagerbrink, S.; Felle, S.; Feng, S.; Field, S.; Fixmer, C.; Fletcher, C.; Ford, K.
J.; Fowler, J.; Fox, P.; Francis, E.; Frater, J.; Furze, J.; Fuskova, M.; Galiza, E.; Gbesemete, D.; Gilbride, C.;
Gorini, G.; Goulston, L.; Grabau, C.; Gracie, L.; Gray, Z.; Guthrie, L. B.; Hackett, M.; Halwe, S.; Hamilton,
E.; Hamlyn, J.; Hanumunthadu, B.; Harding, I.; Harris, S. A.; Harris, A.; Harrison, D.; Harrison, C.; Hart, T.
C.; Haskell, L.; Hawkins, S.; Head, I.; Henry, J. A.; Hill, J.; Hodgson, S. H. C.; Hou, M. M.; Howe, E.; Howell,
N.; Hutlin, C.; Ikram, S.; Isitt, C.; Iveson, P.; Jackson, S.; Jackson, F.; James, S. W.; Jenkins, M.; Jones, E.;
Jones, K.; Jones, C. E.; Jones, B.; Kailath, R.; Karampatsas, K.; Keen, J.; Kelly, S.; Kelly, D.; Kerr, D.;
Kerridge, S.; Khan, L.; Khan, U.; Killen, A.; Kinch, J.; King, T. B.; King, L.; King, J.; Kingham-Page, L.;
Klenerman, P.; Knapper, F.; Knight, J. C.; Koleva, S.; Kupke, A.; Larkworthy, C. W.; Larwood, J. P. J.;
Laskey, A.; Lawrie, A. M.; Lee, A.; Ngan Lee, K. Y.; Lee, E. A.; Legge, H.; Lelliott, A.; Lemm, N.-M.; Lias, A.
M.; Linder, A.; Lipworth, S.; Liu, X.; Liu, S.; Lopez Ramon, R.; Lwin, M.; Mabesa, F.; Madhavan, M.;
Mallett, G.; Mansatta, K.; Marcal, I.; Marinou, S.; Marlow, E.; Marshall, J. L.; Martin, J.; McEwan, J.;
Meddaugh, G.; Mentzer, A. J.; Mirtorabi, N.; Moore, M.; Moran, E.; Morey, E.; Morgan, V.; Morris, S. J.;
Morrison, H.; Morshead, G.; Morter, R.; Mujadidi, Y. F.; Muller, J.; Munera-Huertas, T.; Munro, C.;
Munro, A.; Murphy, S.; Muster, V. J.; Mweu, P.; Noé, A.; Nugent, F. L.; Nugent, E.; O'Brien, K.; O'Connor,
D.; Oguti, B.; Oliver, J. L.; Oliveira, C.; O'Reilly, P. J.; Osborn, M.; Osborne, P.; Owen, C.; Owens, D.;
Owino, N.; Pacurar, M.; Parker, K.; Parracho, H.; Patrick-Smith, M.; Payne, V.; Pearce, J.; Peng, Y.; Peralta
Alvarez, M. P.; Perring, J.; Pfafferott, K.; Pipini, D.; Plested, E.; Pluess-Hall, H.; Pollock, K.; Poulton, I.;
Presland, L.; Provstgaard-Morys, S.; Pulido, D.; Radia, K.; Ramos Lopez, F.; Rand, J.; Ratcliffe, H.;
Rawlinson, T.; Rhead, S.; Riddell, A.; Ritchie, A. J.; Roberts, H.; Robson, J.; Roche, S.; Rohde, C.; Rollier, C.
S.; Romani, R.; Rudiansyah, I.; Saich, S.; Sajjad, S.; Salvador, S.; Sanchez Riera, L.; Sanders, H.; Sanders, K.;
Sapaun, S.; Sayce, C.; Schofield, E.; Screaton, G.; Selby, B.; Semple, C.; Sharpe, H. R.; Shea, A.; Shelton, H.;
Silk, S.; Silva-Reyes, L.; Skelly, D. T.; Smee, H.; Smith, C. C.; Smith, D. J.; Song, R.; Spencer, A. J.; Stafford,
E.; Steele, A.; Stefanova, E.; Stockdale, L.; Szigeti, A.; Tahiri-Alaoui, A.; Tait, M.; Talbot, H.; Tanner, R.;
Taylor, I. J.; Taylor, V.; Te Water Naude, R.; Thakur, N.; Themistocleous, Y.; Themistocleous, A.; Thomas,
M.; Thomas, T. M.; Thompson, A.; Thomson-Hill, S.; Tomlins, J.; Tonks, S.; Towner, J.; Tran, N.; Tree, J. A.;
Truby, A.; Turkentine, K.; Turner, C.; Turner, N.; Turner, S.; Tuthill, T.; Ulaszewska, M.; Varughese, R.; Van
Doremalen, N.; Veighey, K.; Verheul, M. K.; Vichos, I.; Vitale, E.; Walker, L.; Watson, M. E. E.; Welham, B.;
Wheat, J.; White, C.; White, R.; Worth, A. T.; Wright, D.; Wright, S.; Yao, X. L.; Yau, Y., Safety and
immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase
1/2, single-blind, randomised controlled trial. The Lancet 2020.
https://doi.org/10.1016/S0140-
6736(20)31604-4
192. Formina, D. S.; Lysenko, M.; yana, A.; Beloglazova, I. P.; Mutinova, z. Y.; Poteshkina, N. G.;
Samsonova, I. V.; Kruglova, T.; yana, S.; Chernov, A. A.; Karaulov, A. V.; Lederman, M. M., Temporal
clinical and laboratory response to interleukin-6 receptor blockade with Tocilizumab in 89 hospitalized
patients with COVID-19 pneumonia. medRxiv 2020, 2020.06.12.20122374.
http://medrxiv.org/content/early/2020/06/12/2020.06.12.20122374.abstract
193. Forster, P.; Forster, L.; Renfrew, C.; Forster, M., Phylogenetic network analysis of SARS-CoV-2
genomes. Proceedings of the National Academy of Sciences 2020, 117 (17), 9241-9243.
https://www.pnas.org/content/pnas/117/17/9241.full.pdf
194. Frank, H. K.; Enard, D.; Boyd, S. D., Exceptional diversity and selection pressure on SARS-CoV and
SARS-CoV-2 host receptor in bats compared to other mammals. bioRxiv 2020, 2020.04.20.051656.
https://www.biorxiv.org/content/biorxiv/early/2020/04/20/2020.04.20.051656.full.pdf
195. Galván Casas, C.; Català, A.; Carretero Hernández, G.; Rodríguez-Jiménez, P.; Fernández-Nieto, D.;
Rodríguez-Villa Lario, A.; Navarro Fernández, I.; Ruiz-Villaverde, R.; Falkenhain-López, D.; Llamas Velasco,
M.; García-Gavín, J.; Baniandrés, O.; González-Cruz, C.; Morillas-Lahuerta, V.; Cubiró, X.; Figueras Nart, I.;
Selda-Enriquez, G.; Romaní, J.; Fustà-Novell, X.; Melian-Olivera, A.; Roncero Riesco, M.; Burgos-Blasco,
P.; Sola Ortigosa, J.; Feito Rodriguez, M.; García-Doval, I., Classification of the cutaneous manifestations
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 37
of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. British Journal of
Dermatology 2020, 183 (1), 71-77. https://onlinelibrary.wiley.com/doi/abs/10.1111/bjd.19163
196. Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z.; Gao, H.; Ge, X.;
Kan, B.; Hu, Y.; Liu, J.; Cai, F.; Jiang, D.; Yin, Y.; Qin, C.; Li, J.; Gong, X.; Lou, X.; Shi, W.; Wu, D.; Zhang, H.;
Zhu, L.; Deng, W.; Li, Y.; Lu, J.; Li, C.; Wang, X.; Yin, W.; Zhang, Y.; Qin, C., Rapid development of an
inactivated vaccine for SARS-CoV-2. bioRxiv 2020, 2020.04.17.046375.
https://www.biorxiv.org/content/biorxiv/early/2020/04/19/2020.04.17.046375.full.pdf
197. Garg, S., Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-
Confirmed Coronavirus Disease 2019COVID-NET, 14 States, March 130, 2020. MMWR. Morbidity and
Mortality Weekly Report 2020, 69.
198. Gatto, M.; Bertuzzo, E.; Mari, L.; Miccoli, S.; Carraro, L.; Casagrandi, R.; Rinaldo, A., Spread and
dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. Proceedings
of the National Academy of Sciences 2020, 202004978.
https://www.pnas.org/content/pnas/early/2020/04/22/2004978117.full.pdf
199. Gautret, P.; Lagier, J.-C.; Parola, P.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo,
V.; Vieira, V. E.; Dupont, H. T., Hydroxychloroquine and azithromycin as a treatment of COVID-19: results
of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents 2020,
105949.
200. Geleris, J.; Sun, Y.; Platt, J.; Zucker, J.; Baldwin, M.; Hripcsak, G.; Labella, A.; Manson, D.; Kubin, C.;
Barr, R. G.; Sobieszczyk, M. E.; Schluger, N. W., Observational Study of Hydroxychloroquine in
Hospitalized Patients with Covid-19. New England Journal of Medicine 2020.
https://www.nejm.org/doi/full/10.1056/NEJMoa2012410
201. Gendelman, O.; Amital, H.; Bragazzi, N. L.; Watad, A.; Chodick, G., Continuous hydroxychloroquine
or colchicine therapy does not prevent infection with SARS-CoV-2: Insights from a large healthcare
database analysis. Autoimmunity Reviews 2020, 102566.
http://www.sciencedirect.com/science/article/pii/S1568997220301282
202. Genexine, Safety and Immunogenicity Study of GX-19, a COVID-19 Preventive DNA Vaccine in
Healthy Adults.
https://clinicaltrials.gov/ct2/show/NCT04445389?term=vaccine&cond=covid-
19&draw=3.
203. Gérard, A.; Romani, S.; Fresse, A.; Viard, D.; Parassol, N.; Granvuillemin, A.; Chouchana, L.; Rocher,
F.; Drici, M.-D., “Off-label” use of hydroxychloroquine, azithromycin, lopinavir-ritonavir and chloroquine
in COVID-19: A survey of cardiac adverse drug reactions by the French Network of Pharmacovigilance
Centers. Therapies 2020. http://www.sciencedirect.com/science/article/pii/S0040595720300913
204. Gharbharan, A.; Jordans, C. C. E.; GeurtsvanKessel, C.; den Hollander, J. G.; Karim, F.; Mollema, F. P.
N.; Stalenhoef, J. E.; Dofferhoff, A.; Ludwig, I.; Koster, A.; Hassing, R.-J.; Bos, J. C.; van Pottelberge, G. R.;
Vlasveld, I. N.; Ammerlaan, H. S. M.; Segarceanu, E.; Miedema, J.; van der Eerden, M.; Papageorgiou, G.;
te Broekhorst, P.; Swaneveld, F. H.; Katsikis, P. D.; Mueller, Y.; Okba, N. M. A.; Koopmans, M. P. G.;
Haagmans, B. L.; Rokx, C.; Rijnders, B., Convalescent Plasma for COVID-19. A randomized clinical trial.
medRxiv 2020, 2020.07.01.20139857.
http://medrxiv.org/content/early/2020/07/03/2020.07.01.20139857.abstract
205. Gilead, Gilead Presents Additional Data on Investigational Antiviral Remdesivir for the Treatment of
COVID-19. 2020.
https://www.gilead.com/news-and-press/press-room/press-releases/2020/7/gilead-
presents-additional-data-on-investigational-antiviral-remdesivir-for-the-treatment-of-covid-19
206. GitHub Inc., Reproducible analyses for rejecting rare genomic inversions in SARS-CoV-2.
https://github.com/alexcritschristoph/sars_cov_2_inversion
(accessed 04 April).
207. Godoy, M., Mystery Inflammatory Syndrome In Kids And Teens Likely Linked To COVID-19. NPR
2020.
https://www.npr.org/sections/health-shots/2020/05/07/851725443/mystery-inflammatory-
syndrome-in-kids-and-teens-likely-linked-to-covid-19
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 38
208. Gokhale, Y.; Mehta, R.; Karnik, N.; Kulkarni, U.; Gokhale, S., Tocilizumab improves survival in
patients with persistent hypoxia in severe COVID-19 pneumonia. EClinicalMedicine 2020, 24, 100467.
209. Goldstein, J., 68% Have Antibodies in This Clinic. Can a Neighborhood Beat a Next Wave? The New
York Times 2020. https://www.nytimes.com/2020/07/09/nyregion/nyc-coronavirus-antibodies.html
210. Gonzalez-Reiche, A. S.; Hernandez, M. M.; Sullivan, M. J.; Ciferri, B.; Alshammary, H.; Obla, A.;
Fabre, S.; Kleiner, G.; Polanco, J.; Khan, Z.; Alburquerque, B.; van de Guchte, A.; Dutta, J.; Francoeur, N.;
Melo, B. S.; Oussenko, I.; Deikus, G.; Soto, J.; Sridhar, S. H.; Wang, Y.-C.; Twyman, K.; Kasarskis, A.;
Altman, D. R.; Smith, M.; Sebra, R.; Aberg, J.; Krammer, F.; García-Sastre, A.; Luksza, M.; Patel, G.; Paniz-
Mondolfi, A.; Gitman, M.; Sordillo, E. M.; Simon, V.; van Bakel, H., Introductions and early spread of
SARS-CoV-2 in the New York City area. Science 2020, eabc1917.
https://science.sciencemag.org/content/sci/early/2020/05/28/science.abc1917.full.pdf
211. Goren, A.; Vaño-Galván, S.; Wambier, C. G.; McCoy, J.; Gomez-Zubiaur, A.; Moreno-Arrones, O. M.;
Shapiro, J.; Sinclair, R. D.; Gold, M. H.; Kovacevic, M.; Mesinkovska, N. A.; Goldust, M.; Washenik, K., A
preliminary observation: Male pattern hair loss among hospitalized COVID-19 patients in Spain A
potential clue to the role of androgens in COVID-19 severity. Journal of Cosmetic Dermatology n/a (n/a).
https://onlinelibrary.wiley.com/doi/abs/10.1111/jocd.13443
212. Gorgolas, M.; Cabello, A.; Prieto Perez, L.; Villar Alvarez, F.; Alvarez Alvarez, B.; Rodriguez Nieto, M.
J.; Carrillo Acosta, I.; Fernandez Ormaechea, I.; Al-Hayani, A.; Carballosa, P.; Calpena Martinez, S.; Ezzine
de Blas, F.; Castellanos Gonzalez, M.; Naya Prieto, A.; Lopez de las Heras, M.; Rodriguez Guzman, M. J.;
Cordero Guijarro, A.; Broncano Lavado, A.; Macias Valcayo, A.; Martin Garcia, M.; Becares Martinez, J.;
Fernandez Roblas, R.; Piris Pinilla, M. A.; Fortes Alen, J.; Sanchez Pernaute, O.; Romero Bueno, F.; Heili
Frades, S.; Peces Barba Romero, G., Compassionate Use of Tocilizumab in Severe SARS-CoV2 Pneumonia.
When late administration is too late. medRxiv 2020, 2020.06.13.20130088.
http://medrxiv.org/content/early/2020/06/16/2020.06.13.20130088.abstract
213. Götzinger, F.; Santiago-García, B.; Noguera-Julián, A.; al., e., COVID-19 in children and adolescents
in Europe: a multinational, multicentre cohort study. The Lancet Child & Adolescent Health 2020.
https://doi.org/10.1016/S2352-4642(20)30177-2
214. Goyal, P.; Choi, J. J.; Pinheiro, L. C.; Schenck, E. J.; Chen, R.; Jabri, A.; Satlin, M. J.; Campion, T. R.;
Nahid, M.; Ringel, J. B.; Hoffman, K. L.; Alshak, M. N.; Li, H. A.; Wehmeyer, G. T.; Rajan, M.; Reshetnyak,
E.; Hupert, N.; Horn, E. M.; Martinez, F. J.; Gulick, R. M.; Safford, M. M., Clinical Characteristics of Covid-
19 in New York City. New England Journal of Medicine 2020.
https://www.nejm.org/doi/full/10.1056/NEJMc2010419
215. Griffin, B. D.; Chan, M.; Tailor, N.; Mendoza, E. J.; Leung, A.; Warner, B. M.; Duggan, A. T.; Moffat,
E.; He, S.; Garnett, L.; Tran, K. N.; Banadyga, L.; Albietz, A.; Tierney, K.; Audet, J.; Bello, A.; Vendramelli,
R.; Boese, A. S.; Fernando, L.; Lindsay, L. R.; Jardine, C. M.; Wood, H.; Poliquin, G.; Strong, J. E.; Drebot,
M.; Safronetz, D.; Embury-Hyatt, C.; Kobasa, D., North American deer mice are susceptible to SARS-CoV-
2. bioRxiv 2020, 2020.07.25.221291.
http://biorxiv.org/content/early/2020/07/26/2020.07.25.221291.abstract
216. Griffin, S., Covid-19: Lopinavir-ritonavir does not benefit hospitalised patients, UK trial finds. BMJ
2020, 370, m2650. http://www.bmj.com/content/370/bmj.m2650.abstract
217. Grifoni, A.; Weiskopf, D.; Ramirez, S. I.; Mateus, J.; Dan, J. M.; Moderbacher, C. R.; Rawlings, S. A.;
Sutherland, A.; Premkumar, L.; Jadi, R. S., Targets of T cell responses to SARS-CoV-2 coronavirus in
humans with COVID-19 disease and unexposed individuals. Cell 1920.
218. Gu, Y., COVID-19 Projections Using Machine Learning.
https://covid19-projections.com/#view-
projections.
219. Guan, L.; Zhou, L.; Zhang, J.; Peng, W.; Chen, R., More awareness is needed for severe acute
respiratory syndrome coronavirus 2019 transmission through exhaled air during non-invasive respiratory
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 39
support: experience from China. European Respiratory Journal 2020, 55 (3), 2000352.
https://erj.ersjournals.com/content/erj/55/3/2000352.full.pdf
220. Guan, W.-j.; Ni, Z.-y.; Hu, Y.; Liang, W.-h.; Ou, C.-q.; He, J.-x.; Liu, L.; Shan, H.; Lei, C.-l.; Hui, D. S. C.;
Du, B.; Li, L.-j.; Zeng, G.; Yuen, K.-Y.; Chen, R.-c.; Tang, C.-l.; Wang, T.; Chen, P.-y.; Xiang, J.; Li, S.-y.;
Wang, J.-l.; Liang, Z.-j.; Peng, Y.-x.; Wei, L.; Liu, Y.; Hu, Y.-h.; Peng, P.; Wang, J.-m.; Liu, J.-y.; Chen, Z.; Li,
G.; Zheng, Z.-j.; Qiu, S.-q.; Luo, J.; Ye, C.-j.; Zhu, S.-y.; Zhong, N.-s., Clinical Characteristics of Coronavirus
Disease 2019 in China. New England Journal of Medicine 2020, 382, 1708-1720.
https://www.nejm.org/doi/full/10.1056/NEJMoa2002032?query=recirc_artType_railA_article
221. Guaraldi, G.; Meschiari, M.; Cozzi-Lepri, A.; Milic, J.; Tonelli, R.; Menozzi, M.; Franceschini, E.;
Cuomo, G.; Orlando, G.; Borghi, V.; Santoro, A.; Di Gaetano, M.; Puzzolante, C.; Carli, F.; Bedini, A.;
Corradi, L.; Fantini, R.; Castaniere, I.; Tabbì, L.; Girardis, M.; Tedeschi, S.; Giannella, M.; Bartoletti, M.;
Pascale, R.; Dolci, G.; Brugioni, L.; Pietrangelo, A.; Cossarizza, A.; Pea, F.; Clini, E.; Salvarani, C.; Massari,
M.; Viale, P. L.; Mussini, C., Tocilizumab in patients with severe COVID-19: a retrospective cohort study.
The Lancet Rheumatology 2020. http://www.sciencedirect.com/science/article/pii/S2665991320301739
222. Guo, Z.; Wang, Z.; Zhang, S.; Li, X.; Li, L.; Li, C.; Cui, Y.; Fu, R.; Dong, Y.; Chi, X., Aerosol and Surface
Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China,
2020. Emerging infectious diseases 2020, 26 (7).
223. Gussow, A. B.; Auslander, N.; Faure, G.; Wolf, Y. I.; Zhang, F.; Koonin, E. V., Genomic determinants
of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proceedings of the National Academy of
Sciences 2020, 202008176. https://www.pnas.org/content/pnas/early/2020/06/09/2008176117.full.pdf
224. Halfmann, P. J.; Hatta, M.; Chiba, S.; Maemura, T.; Fan, S.; Takeda, M.; Kinoshita, N.; Hattori, S. I.;
Sakai-Tagawa, Y.; Iwatsuki-Horimoto, K.; Imai, M.; Kawaoka, Y., Transmission of SARS-CoV-2 in Domestic
Cats. N Engl J Med 2020.
225. Hamilton, I. A., Bill Gates is funding new factories for potential coronavirus vaccines.
https://www.weforum.org/agenda/2020/04/bill-gates-7-potential-coronavirus-vaccines
.
226. Hao, X.; Cheng, S.; Wu, D.; Wu, T.; Lin, X.; Wang, C., Reconstruction of the full transmission
dynamics of COVID-19 in Wuhan. Nature 2020. https://doi.org/10.1038/s41586-020-2554-8
227. Harbourt, D.; Haddow, A.; Piper, A.; Bloomfield, H.; Kearney, B.; Gibson, K.; Minogue, T., Modeling
the Stability of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) on Skin, Currency, and
Clothing. medRxiv 2020, 2020.07.01.20144253.
https://www.medrxiv.org/content/medrxiv/early/2020/07/03/2020.07.01.20144253.full.pdf
228. Hargreaves, B., Catalent takes on manufacture of J&J's coronavirus vaccine.
https://www.biopharma-reporter.com/Article/2020/04/30/Catalent-to-manufacture-Janssen-
coronavirus-vaccine.
229. Hargreaves, B., Lonza and Moderna shoot for billion COVID-19 doses. https://www.biopharma-
reporter.com/Article/2020/05/05/Lonza-and-Moderna-partner-for-COVID-19-vaccine.
230. Hargreaves, B., Pfizer and BioNTech work to scale up COVID-19 vaccine production.
https://www.biopharma-reporter.com/Article/2020/05/11/Pfizer-scales-up-COVID-vaccine-production
.
231. Harris, M.; Bagozzi, D., WHO discontinues hydroxychloroquine and lopinavir/ritonavir treatment
arms for COVID-19. Organization, W. H., Ed. 2020.
https://www.who.int/news-room/detail/04-07-2020-
who-discontinues-hydroxychloroquine-and-lopinavir-ritonavir-treatment-arms-for-covid-19
232. Hartman, A. L.; Nambulli, S.; McMillen, C. M.; White, A. G.; Tilston-Lunel, N.; Albe, J. R.; Cottle, E. L.;
Dunn, M. D.; Frye, L. J.; Gilliland, T. H.; Olsen, E. L.; Malley, K. J.; Schwarz, M. M.; Tomko, J. A.; Walker, R.
C.; Xia, M.; Hartman, M. S.; Klein, E.; Scanga, C.; Flynn, J. L.; Klimstra, W. B.; McElroy, A. K.; Reed, D. S.;
Duprex, W. P., SARS-CoV-2 infection of African green monkeys results in mild respiratory disease
discernible by PET/CT imaging and prolonged shedding of infectious virus from both respiratory and
gastrointestinal tracts. bioRxiv 2020, 2020.06.20.137687.
http://biorxiv.org/content/early/2020/06/21/2020.06.20.137687.abstract
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 40
233. Hashimoto, S.; Kitajima, H.; Arai, T.; Tamura, Y.; Nagai, T.; Morishita, H.; Matsuoka, H.; Han, Y.;
Minamoto, S.; Hirashima, T.; Yamada, T.; Kashiwa, Y.; Kameda, M.; Yamaguchi, S.; Uno, K.; Nakayama, E.;
Shioda, T.; Yoshizaki, K.; Kang, S.; Kishimoto, T.; Tanaka, T., A retrospective study evaluating efficacy and
safety of compassionate use of tocilizumab in 13 patients with severe-to-critically ill COVID-19: analysis
of well-responding cases and rapidly-worsening cases after tocilizumab administration. medRxiv 2020,
2020.06.24.20134288. http://medrxiv.org/content/early/2020/06/30/2020.06.24.20134288.abstract
234. Havers, F. P.; Reed, C.; Lim, T.; Montgomery, J. M.; Klena, J. D.; Hall, A. J.; Fry, A. M.; Cannon, D. L.;
Chiang, C.-F.; Gibbons, A.; Krapiunaya, I.; Morales-Betoulle, M.; Roguski, K.; Rasheed, M. A. U.; Freeman,
B.; Lester, S.; Mills, L.; Carroll, D. S.; Owen, S. M.; Johnson, J. A.; Semenova, V.; Blackmore, C.; Blog, D.;
Chai, S. J.; Dunn, A.; Hand, J.; Jain, S.; Lindquist, S.; Lynfield, R.; Pritchard, S.; Sokol, T.; Sosa, L.;
Turabelidze, G.; Watkins, S. M.; Wiesman, J.; Williams, R. W.; Yendell, S.; Schiffer, J.; Thornburg, N. J.,
Seroprevalence of Antibodies to SARS-CoV-2 in 10 Sites in the United States, March 23-May 12, 2020.
JAMA Internal Medicine 2020. https://doi.org/10.1001/jamainternmed.2020.4130
235. Hazbun, M. E.; Faust, A. C.; Ortegon, A. L.; Sheperd, L. A.; Weinstein, G. L.; Doebele, R. L.;
Weinmeister, K. D.; Liddell, A. M.; Feldman, M., The Combination of Tocilizumab and
Methylprednisolone Along With Initial Lung Recruitment Strategy in Coronavirus Disease 2019 Patients
Requiring Mechanical Ventilation: A Series of 21 Consecutive Cases. Crit Care Explor 2020, 2 (6), e0145.
236. He, R.; Lu, Z.; Zhang, L.; Fan, T.; Xiong, R.; Shen, X.; Feng, H.; Meng, H.; Lin, W.; Jiang, W.; Geng, Q.,
The clinical course and its correlated immune status in COVID-19 pneumonia. Journal of Clinical Virology
2020, 127, 104361. http://www.sciencedirect.com/science/article/pii/S1386653220301037
237. He, X.; Lau, E. H. Y.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y. C.; Wong, J. Y.; Guan, Y.; Tan, X.; Mo,
X.; Chen, Y.; Liao, B.; Chen, W.; Hu, F.; Zhang, Q.; Zhong, M.; Wu, Y.; Zhao, L.; Zhang, F.; Cowling, B. J.; Li,
F.; Leung, G. M., Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Medicine
2020. https://doi.org/10.1038/s41591-020-0869-5
238. Heald-Sargent, T.; Muller, W. J.; Zheng, X.; Rippe, J.; Patel, A. B.; Kociolek, L. K., Age-Related
Differences in Nasopharyngeal Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Levels in
Patients With Mild to Moderate Coronavirus Disease 2019 (COVID-19). JAMA Pediatrics 2020.
https://doi.org/10.1001/jamapediatrics.2020.3651
239. Helms, J.; Kremer, S.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Kummerlen, C.; Collange, O.; Boulay,
C.; Fafi-Kremer, S.; Ohana, M.; Anheim, M.; Meziani, F., Neurologic Features in Severe SARS-CoV-2
Infection. New England Journal of Medicine 2020.
https://www.nejm.org/doi/full/10.1056/NEJMc2008597
240. Holland, L. A.; Kaelin, E. A.; Maqsood, R.; Estifanos, B.; Wu, L. I.; Varsani, A.; Halden, R. U.; Hogue, B.
G.; Scotch, M.; Lim, E. S., An 81 base-pair deletion in SARS-CoV-2 ORF7a identified from sentinel
surveillance in Arizona (Jan-Mar 2020). medRxiv 2020, 2020.04.17.20069641.
https://www.medrxiv.org/content/medrxiv/early/2020/04/22/2020.04.17.20069641.full.pdf
241. Holmes, L.; Enwere, M.; Williams, J.; Ogundele, B.; Chavan, P.; Piccoli, T.; Chinacherem, C.;
Comeaux, C.; Pelaez, L.; Okundaye, O.; Stalnaker, L.; Kalle, F.; Deepika, K.; Philipcien, G.; Poleon, M.;
Ogungbade, G.; Elmi, H.; John, V.; Dabney, K. W., BlackWhite Risk Differentials in COVID-19 (SARS-
COV2) Transmission, Mortality and Case Fatality in the United States: Translational Epidemiologic
Perspective and Challenges. International Journal of Environmental Research and Public Health 2020, 17
(12), 4322. https://www.mdpi.com/1660-4601/17/12/4322
242. Horby, P.; Landray, M., No clinical benefit from use of hydroxychloroquine in hospitalised patients
with COVID-19. Randomised Evaluation of COVid-19 thERapY (RECOVERY) Trial: 2020.
https://www.recoverytrial.net/news/statement-from-the-chief-investigators-of-the-randomised-
evaluation-of-covid-19-therapy-recovery-trial-on-hydroxychloroquine-5-june-2020-no-clinical-benefit-
from-use-of-hydroxychloroquine-in-hospitalised-patients-with-covid-19
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 41
243. Horby, P.; Lim, W. S.; Emberson, J.; Mafham, M.; Bell, J.; Linsell, L.; Staplin, N.; Brightling, C.;
Ustianowski, A.; Elmahi, E.; Prudon, B.; Green, C.; Felton, T.; Chadwick, D.; Rege, K.; Fegan, C.; Chappell,
L. C.; Faust, S. N.; Jaki, T.; Jeffery, K.; Montgomery, A.; Rowan, K.; Juszczak, E.; Baillie, J. K.; Haynes, R.;
Landray, M. J., Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report.
medRxiv 2020, 2020.06.22.20137273.
https://www.medrxiv.org/content/medrxiv/early/2020/06/22/2020.06.22.20137273.full.pdf
244. Horby, P.; Mafham, M.; Linsell, L.; Bell, J. L.; Staplin, N.; Emberson, J. R.; Wiselka, M.; Ustianowski,
A.; Elmahi, E.; Prudon, B.; Whitehouse, A.; Felton, T.; Williams, J.; Faccenda, J.; Underwood, J.; Baillie, J.
K.; Chappell, L.; Faust, S. N.; Jaki, T.; Jeffery, K.; Lim, W. S.; Montgomery, A.; Rowan, K.; Tarning, J.;
Watson, J. A.; White, N. J.; Juszczak, E.; Haynes, R.; Landray, M. J., Effect of Hydroxychloroquine in
Hospitalized Patients with COVID-19: Preliminary results from a multi-centre, randomized, controlled
trial. medRxiv 2020, 2020.07.15.20151852.
https://www.medrxiv.org/content/medrxiv/early/2020/07/15/2020.07.15.20151852.full.pdf
245. Hou, Y. J.; Okuda, K.; Edwards, C. E.; Martinez, D. R.; Asakura, T.; Dinnon, K. H.; Kato, T.; Lee, R. E.;
Yount, B. L.; Mascenik, T. M.; Chen, G.; Olivier, K. N.; Ghio, A.; Tse, L. V.; Leist, S. R.; Gralinski, L. E.;
Schäfer, A.; Dang, H.; Gilmore, R.; Nakano, S.; Sun, L.; Fulcher, M. L.; Livraghi-Butrico, A.; Nicely, N. I.;
Cameron, M.; Cameron, C.; Kelvin, D. J.; de Silva, A.; Margolis, D. M.; Markmann, A.; Bartelt, L.; Zumwalt,
R.; Martinez, F. J.; Salvatore, S. P.; Borczuk, A.; Tata, P. R.; Sontake, V.; Kimple, A.; Jaspers, I.; O’Neal, W.
K.; Randell, S. H.; Boucher, R. C.; Baric, R. S., SARS-CoV-2 Reverse Genetics Reveals a Variable Infection
Gradient in the Respiratory Tract. Cell 2020.
http://www.sciencedirect.com/science/article/pii/S0092867420306759
246. Hsiang, S.; Allen, D.; Annan-Phan, S.; Bell, K.; Bolliger, I.; Chong, T.; Druckenmiller, H.; Huang, L. Y.;
Hultgren, A.; Krasovich, E.; Lau, P.; Lee, J.; Rolf, E.; Tseng, J.; Wu, T., The effect of large-scale anti-
contagion policies on the COVID-19 pandemic. Nature 2020.
https://doi.org/10.1038/s41586-020-2404-
8
247. Hu, K.; Wang, M.; Zhao, Y.; Zhang, Y.; Wang, T.; Zheng, Z.; Li, X.; Zeng, S.; Zhao, D.; Li, H.; Xu, K.; Lan,
K., A Small-Scale Medication of Leflunomide as a Treatment of COVID-19 in an Open-Label Blank-
Controlled Clinical Trial. Virologica Sinica 2020. https://doi.org/10.1007/s12250-020-00258-7
248. Hu, Q.; Cui, X.; Liu, X.; Peng, B.; Jiang, J.; Wang, X.; Li, Y.; Hu, W.; Ao, Z.; Duan, J.; Wang, X.; Zhu, L.;
Guo, S.; Wu, G., The production of antibodies for SARS-CoV-2 and its clinical implication. medRxiv 2020,
2020.04.20.20065953.
https://www.medrxiv.org/content/medrxiv/early/2020/04/24/2020.04.20.20065953.full.pdf
249. Hu, Z.; Song, C.; Xu, C.; Jin, G.; Chen, Y.; Xu, X.; Ma, H.; Chen, W.; Lin, Y.; Zheng, Y.; Wang, J.; Hu, Z.;
Yi, Y.; Shen, H., Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among
close contacts in Nanjing, China. Science China Life Sciences 2020.
https://doi.org/10.1007/s11427-020-
1661-4
250. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.;
Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.;
Gao, Z.; Jin, Q.; Wang, J.; Cao, B., Clinical features of patients infected with 2019 novel coronavirus in
Wuhan, China. The Lancet 2020.
https://www.thelancet.com/journals/lancet/article/PIIS0140-
6736(20)30183-5/fulltext
251. Huang, R.; Xia, J.; Chen, Y.; Shan, C.; Wu, C., A family cluster of SARS-CoV-2 infection involving 11
patients in Nanjing, China. The Lancet Infectious Diseases 2020, 20 (5), 534-535.
https://doi.org/10.1016/S1473-3099(20)30147-X
252. Huang, Y.; Lyu, X.; Li, D.; Wang, Y.; Wang, L.; Zou, W.; Wei, Y.; Wu, X., A cohort study of 223 patients
explores the clinical risk factors for the severity diagnosis of COVID-19. medRxiv 2020,
2020.04.18.20070656.
https://www.medrxiv.org/content/medrxiv/early/2020/04/24/2020.04.18.20070656.full.pdf
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 42
253. Huang, Z.; Tian, D.; Liu, Y.; Lin, Z.; Lyon, C. J.; Lai, W.; Fusco, D.; Drouin, A.; Yin, X.; Hu, T.; Ning, B.,
Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis. Biosensors and Bioelectronics
2020, 164, 112316. http://www.sciencedirect.com/science/article/pii/S0956566320303110
254. Hulkower, R. L.; Casanova, L. M.; Rutala, W. A.; Weber, D. J.; Sobsey, M. D., Inactivation of
surrogate coronaviruses on hard surfaces by health care germicides. American journal of infection
control 2011, 39 (5), 401-407. https://www.sciencedirect.com/science/article/pii/S0196655310009004
255. Hung, I. F.-N.; Lung, K.-C.; Tso, E. Y.-K.; Liu, R.; Chung, T. W.-H.; Chu, M.-Y.; Ng, Y.-Y.; Lo, J.; Chan, J.;
Tam, A. R.; Shum, H.-P.; Chan, V.; Wu, A. K.-L.; Sin, K.-M.; Leung, W.-S.; Law, W.-L.; Lung, D. C.; Sin, S.;
Yeung, P.; Yip, C. C.-Y.; Zhang, R. R.; Fung, A. Y.-F.; Yan, E. Y.-W.; Leung, K.-H.; Ip, J. D.; Chu, A. W.-H.;
Chan, W.-M.; Ng, A. C.-K.; Lee, R.; Fung, K.; Yeung, A.; Wu, T.-C.; Chan, J. W.-M.; Yan, W.-W.; Chan, W.-
M.; Chan, J. F.-W.; Lie, A. K.-W.; Tsang, O. T.-Y.; Cheng, V. C.-C.; Que, T.-L.; Lau, C.-S.; Chan, K.-H.; To, K.
K.-W.; Yuen, K.-Y., Triple combination of interferon beta-1b, lopinavir&#x2013;ritonavir, and ribavirin in
the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial.
The Lancet 2020. https://doi.org/10.1016/S0140-6736(20)31042-4
256. Ibarrondo, F. J.; Fulcher, J. A.; Goodman-Meza, D.; Elliott, J.; Hofmann, C.; Hausner, M. A.; Ferbas, K.
G.; Tobin, N. H.; Aldrovandi, G. M.; Yang, O. O., Rapid Decay of AntiSARS-CoV-2 Antibodies in Persons
with Mild Covid-19. New England Journal of Medicine 2020.
https://www.nejm.org/doi/full/10.1056/NEJMc2025179
257. ICNARC, ICNARC report on COVID-19 in critical care, 24 April 2020; Intensive Care National Audit
and Research Centre: 2020.
https://www.icnarc.org/DataServices/Attachments/Download/c5a62b13-
6486-ea11-9125-00505601089b
258. IDEXX, Leading Veterinary Diagnostic Company Sees No COVID-19 Cases in Pets. IDEXX: 2020.
https://www.idexx.com/en/about-idexx/news/no-covid-19-cases-pets/
259. IHME, COVID-19 Projections. https://covid19.healthdata.org/united-states-of-america.
260. Ijaz, M. K.; Nims, R. W.; Whitehead, K.; Srinivasan, V.; Charlesworth, B.; McKinney, J.; Rubino, J. R.;
Ripley, M.; Jones, C., Microbicidal Actives with Virucidal Efficacy against SARS-CoV-2. American Journal
of Infection Control 2020.
261. Inovio, INOVIO Announces Positive Interim Phase 1 Data For INO-4800 Vaccine for COVID-19
http://ir.inovio.com/news-releases/news-releases-details/2020/INOVIO-Announces-Positive-Interim-
Phase-1-Data-For-INO-4800-Vaccine-for-COVID-19/default.aspx.
262. Inovio, Safety, Tolerability and Immunogenicity of INO-4800 Followed by Electroporation in Healthy
Volunteers for COVID19.
https://clinicaltrials.gov/ct2/show/NCT04447781?term=NCT04447781&draw=2&rank=1
.
263. IQ, H., COVID-19 Forecast for United States. https://app.hospiq.com/covid19?region=.
264. Iwata, K.; Doi, A.; Miyakoshi, C., Was School Closure Effective in Mitigating Coronavirus Disease
2019 (COVID-19)? Time Series Analysis Using Bayesian Inference. 2020.
265. Jackson, L. A.; Anderson, E. J.; Rouphael, N. G.; Roberts, P. C.; Makhene, M.; Coler, R. N.;
McCullough, M. P.; Chappell, J. D.; Denison, M. R.; Stevens, L. J.; Pruijssers, A. J.; McDermott, A.; Flach,
B.; Doria-Rose, N. A.; Corbett, K. S.; Morabito, K. M.; O’Dell, S.; Schmidt, S. D.; Swanson, P. A.; Padilla,
M.; Mascola, J. R.; Neuzil, K. M.; Bennett, H.; Sun, W.; Peters, E.; Makowski, M.; Albert, J.; Cross, K.;
Buchanan, W.; Pikaart-Tautges, R.; Ledgerwood, J. E.; Graham, B. S.; Beigel, J. H., An mRNA Vaccine
against SARS-CoV-2 Preliminary Report. New England Journal of Medicine 2020.
https://www.nejm.org/doi/full/10.1056/NEJMoa2022483
266. Jankelson, L.; Karam, G.; Becker, M. L.; Chinitz, L. A.; Tsai, M. C., QT prolongation, torsades de
pointes and sudden death with short courses of chloroquine or hydroxychloroquine as used in COVID-
19: a systematic review. Heart Rhythm 2020.
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 43
267. Jarvis, C. I.; Van Zandvoort, K.; Gimma, A.; Prem, K.; Klepac, P.; Rubin, G. J.; Edmunds, W. J.,
Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC
Med 2020, 18 (1), 124.
268. Jenco, M., CDC details COVID-19-related inflammatory syndrome in children. AAP News 2020.
https://www.aappublications.org/news/2020/05/14/covid19inflammatory051420
269. JHU, Coronavirus COVID-19 Global Cases by Johns Hopkins CSSE.
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e
9ecf6.
270. Jiang, F.-C.; Jiang, X.-L.; Wang, Z.-G.; Meng, Z.-H.; Shao, S.-F.; Anderson, B. D.; Ma, M.-J., Detection
of Severe Acute Respiratory Syndrome Coronavirus 2 RNA on Surfaces in Quarantine Rooms. Emerging
Infectious Diseases 2020, 26. https://wwwnc.cdc.gov/eid/article/26/9/20-1435_article
271. Jiménez-Brítez, G.; Ruiz, P.; Soler, X., Tocilizumab plus glucocorticoids in severe and critically COVID-
19 patients. A single center experience. Med Clin (Barc) 2020.
272. Jing, C.; Wenjie, S.; Jianping, H.; Michelle, G.; Jing, W.; Guiqing, H., Indirect Virus Transmission in
Cluster of COVID-19 Cases, Wenzhou, China, 2020. Emerging Infectious Disease journal 2020, 26 (6).
https://wwwnc.cdc.gov/eid/article/26/6/20-0412_article
273. Jing, Q.-L.; Liu, M.-J.; Zhang, Z.-B.; Fang, L.-Q.; Yuan, J.; Zhang, A.-R.; Dean, N. E.; Luo, L.; Ma, M.-M.;
Longini, I.; Kenah, E.; Lu, Y.; Ma, Y.; Jalali, N.; Yang, Z.-C.; Yang, Y., Household secondary attack rate of
COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study. The Lancet
Infectious Diseases 2020. https://doi.org/10.1016/S1473-3099(20)30471-0
274. Johndrow, J. E.; Lum, K.; Ball, P., Estimating SARS-CoV-2-positive Americans using deaths-only data.
arXiv preprint arXiv:2004.02605 2020.
275. Johnson, J., Johnson & Johnson Announces Acceleration of its COVID-19 Vaccine Candidate; Phase
1/2a Clinical Trial to Begin in Second Half of July.
https://www.jnj.com/johnson-johnson-announces-
acceleration-of-its-covid-19-vaccine-candidate-phase-1-2a-clinical-trial-to-begin-in-second-half-of-july.
276. Johnston, S. C.; Jay, A.; Raymond, J. L.; Rossi, F.; Zeng, X.; Scruggs, J.; Dyer, D.; Frick, O.; Moore, J.;
Berrier, K.; Esham, H.; Shamblin, J.; Sifford, W.; Fiallos, J.; Klosterman, L.; Stevens, S.; White, L.; Bowling,
P.; Garcia, T.; Jensen, C.; Ghering, J.; Nyakiti, D.; Bellanca, S.; Kearney, B.; Giles, W.; Alli, N.; Paz, F.; Akers,
K.; Danner, D.; Barth, J.; Johnson, J. A.; Durant, M.; Kim, R.; Pitt, M. L. M.; Nalca, A., Development of a
Coronavirus Disease 2019 Nonhuman Primate Model Using Airborne Exposure. bioRxiv 2020,
2020.06.26.174128. http://biorxiv.org/content/early/2020/06/26/2020.06.26.174128.abstract
277. Jones, R. M., Relative contributions of transmission routes for COVID-19 among healthcare
personnel providing patient care. Journal of Occupational and Environmental Hygiene 2020, 1-8.
https://doi.org/10.1080/15459624.2020.1784427
278. Joseph, A., CDC developing serologic tests that could reveal full scope of U.S. coronavirus outbreak.
STAT 2020.
https://www.statnews.com/2020/03/11/cdc-developing-serologic-tests-that-could-reveal-
full-scope-of-u-s-coronavirus-outbreak/
279. Joyner, M.; Wright, R. S.; Fairweather, D.; Senefeld, J.; Bruno, K.; Klassen, S.; Carter, R.; Klompas, A.;
Wiggins, C.; Shepherd, J. R.; Rea, R.; Whelan, E.; Clayburn, A.; Spiegel, M.; Johnson, P.; Lesser, E.; Baker,
S.; Larson, K.; Ripoll Sanz, J.; Andersen, K.; Hodge, D.; Kunze, K.; Buras, M.; Vogt, M.; Herasevich, V.;
Dennis, J.; Regimbal, R.; Bauer, P.; Blair, J.; van Buskirk, C.; Winters, J.; Stubbs, J.; Paneth, N.; Casadevall,
A., Early Safety Indicators of COVID-19 Convalescent Plasma in 5,000 Patients. medRxiv 2020,
2020.05.12.20099879.
https://www.medrxiv.org/content/medrxiv/early/2020/05/14/2020.05.12.20099879.full.pdf
280. Juan, J.; Gil, M. M.; Rong, Z.; Zhang, Y.; Yang, H.; Poon, L. C. Y., Effects of Coronavirus Disease 2019
(COVID-19) on Maternal, Perinatal and Neonatal Outcomes: a Systematic Review of 266 Pregnancies.
medRxiv 2020, 2020.05.02.20088484.
https://www.medrxiv.org/content/medrxiv/early/2020/05/06/2020.05.02.20088484.full.pdf
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 44
281. Jüni, P.; Rothenbühler, M.; Bobos, P.; Thorpe, K. E.; da Costa, B. R.; Fisman, D. N.; Slutsky, A. S.;
Gesink, D., Impact of climate and public health interventions on the COVID-19 pandemic: A prospective
cohort study. Canadian Medical Association Journal 2020, cmaj.200920.
https://www.cmaj.ca/content/cmaj/early/2020/05/08/cmaj.200920.full.pdf
282. Kaafarani, H. M. A.; El Moheb, M.; Hwabejire, J. O.; Naar, L.; Christensen, M. A.; Breen, K.;
Gaitanidis, A.; Alser, O.; Mashbari, H.; Bankhead-Kendall, B.; Mokhtari, A.; Maurer, L.; Kapoen, C.;
Langeveld, K.; El Hechi, M. W.; Lee, J.; Mendoza, A. E.; Saillant, N. N.; Parks, J.; Fawley, J.; King, D. R.;
Fagenholz, P. J.; Velmahos, G. C., Gastrointestinal Complications in Critically Ill Patients With COVID-19.
Annals of Surgery 2020, 272 (2), e61-e62.
https://journals.lww.com/annalsofsurgery/Fulltext/2020/08000/Gastrointestinal_Complications_in_Criti
cally_Ill.18.aspx
283. Karamitros, T.; Papadopoulou, G.; Bousali, M.; Mexias, A.; Tsiodras, S.; Mentis, A., SARS-CoV-2
exhibits intra-host genomic plasticity and low-frequency polymorphic quasispecies. bioRxiv 2020,
2020.03.27.009480. http://biorxiv.org/content/early/2020/03/28/2020.03.27.009480.abstract
284. Karnakov, P.; Arampatzis, G.; Kičić, I.; Wermelinger, F.; Wälchli, D.; Papadimitriou, C.;
Koumoutsakos, P., Data driven inference of the reproduction number (R0) for COVID-19 before and after
interventions for 51 European countries. 2020.
285. KCDC, Findings from investigation and analysis of re-positive cases. Korean Centers for Disease
Control and Prevention: 2020. https://www.cdc.go.kr/board/board.es?mid=a30402000000&bid=0030
286. Keller, M. J.; Kitsis, E. A.; Arora, S.; Chen, J. T.; Agarwal, S.; Ross, M. J.; Tomer, Y.; Southern, W.,
Effect of Systemic Glucocorticoids on Mortality or Mechanical Ventilation in Patients With COVID-19.
Journal of Hospital Medicine 2020, Online First, July 22nd, 2020.
287. Kelly, M.; O'Connor, R.; Townsend, L.; Coghlan, M.; Relihan, E.; Moriarty, M.; Carr, B.; Melanophy,
G.; Doyle, C.; Bannan, C.; O'Riordan, R.; Merry, C.; Clarke, S.; Bergin, C., Clinical outcomes and adverse
events in patients hospitalised with COVID -19, treated with off- label hydroxychloroquine and
azithromycin. Br J Clin Pharmacol 2020.
288. Keske, Ş.; Tekin, S.; Sait, B.; İrkören, P.; Kapmaz, M.; Çimen, C.; Uğur, S.; Çelebi, İ.; Bakır, V. O.;
Palaoğlu, E.; Şentürk, E.; Çağlayan, B.; Çakar, N.; Tabak, L.; Ergönül, Ö., Appropriate use of Tocilizumab in
COVID-19 Infection. Int J Infect Dis 2020.
289. Khalil, A.; von Dadelszen, P.; Draycott, T.; Ugwumadu, A.; O’Brien, P.; Magee, L., Change in the
Incidence of Stillbirth and Preterm Delivery During the COVID-19 Pandemic. JAMA 2020.
https://doi.org/10.1001/jama.2020.12746
290. Kim, S. E.; Jeong, H. S.; Yu, Y.; Shin, S. U.; Kim, S.; Oh, T. H.; Kim, U. J.; Kang, S. J.; Jang, H. C.; Jung, S.
I.; Park, K. H., Viral kinetics of SARS-CoV-2 in asymptomatic carriers and presymptomatic patients. Int J
Infect Dis 2020.
291. Kim, Y.-I.; Kim, S.-G.; Kim, S.-M.; Kim, E.-H.; Park, S.-J.; Yu, K.-M.; Chang, J.-H.; Kim, E. J.; Lee, S.;
Casel, M. A. B.; Um, J.; Song, M.-S.; Jeong, H. W.; Lai, V. D.; Kim, Y.; Chin, B. S.; Park, J.-S.; Chung, K.-H.;
Foo, S.-S.; Poo, H.; Mo, I.-P.; Lee, O.-J.; Webby, R. J.; Jung, J. U.; Choi, Y. K., Infection and Rapid
Transmission of SARS-CoV-2 in Ferrets. Cell Host & Microbe 2020.
http://www.sciencedirect.com/science/article/pii/S1931312820301876
292. Kissler, S. M.; Tedijanto, C.; Goldstein, E.; Grad, Y. H.; Lipsitch, M., Projecting the transmission
dynamics of SARS-CoV-2 through the postpandemic period. Science 2020, eabb5793.
https://science.sciencemag.org/content/sci/early/2020/04/14/science.abb5793.full.pdf
293. Klok, F.; Kruip, M.; van der Meer, N.; Arbous, M.; Gommers, D.; Kant, K.; Kaptein, F.; van Paassen, J.;
Stals, M.; Huisman, M., Incidence of thrombotic complications in critically ill ICU patients with COVID-19.
Thrombosis Research 2020.
294. Klumpp-Thomas, C.; Kalish, H.; Drew, M.; Hunsberger, S.; Snead, K.; Fay, M. P.; Mehalko, J.;
Shunmugavel, A.; Wall, V.; Frank, P.; Denson, J.-P.; Hong, M.; Gulten, G.; Messing, S.; Hicks, J.; Michael,
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 45
S.; Gilette, W.; Hall, M. D.; Memoli, M.; Esposito, D.; Sadtler, K., Standardization of enzyme-linked
immunosorbent assays for serosurveys of the SARS-CoV-2 pandemic using clinical and at-home blood
sampling. medRxiv 2020, 2020.05.21.20109280.
https://www.medrxiv.org/content/medrxiv/early/2020/05/25/2020.05.21.20109280.full.pdf
295. Knorr, J. P.; Colomy, V.; Mauriello, C. M.; Ha, S., Tocilizumab in patients with severe COVID-19: A
single-center observational analysis. Journal of Medical Virology 2020, n/a (n/a).
https://doi.org/10.1002/jmv.26191
296. Komissarov, A.; Molodtsov, I.; Ivanova, O.; Maryukhnich, E.; Kudryavtseva, S.; Mazus, A.; Nikonov,
E.; Vasilieva, E., Hydroxychloroquine has no effect on SARS-CoV-2 load in nasopharynx of patients with
mild form of COVID-19. medRxiv 2020, 2020.06.30.20143289.
http://medrxiv.org/content/early/2020/07/03/2020.06.30.20143289.abstract
297. Konda, A.; Prakash, A.; Moss, G. A.; Schmoldt, M.; Grant, G. D.; Guha, S., Aerosol Filtration
Efficiency of Common Fabrics Used in Respiratory Cloth Masks. ACS Nano 2020.
https://www.ncbi.nlm.nih.gov/pubmed/32329337
298. Kong, D.; Zheng, Y.; Wu, H.; Pan, H.; Wagner, A. L.; Zheng, Y.; Gong, X.; Zhu, Y.; Jin, B.; Xiao, W.;
Mao, S.; Lin, S.; Han, R.; Yu, X.; Cui, P.; Jiang, C.; Fang, Q.; Lu, Y.; Fu, C., Pre-symptomatic transmission of
novel coronavirus in community settings. Influenza and Other Respiratory Viruses 2020, n/a (n/a).
https://onlinelibrary.wiley.com/doi/abs/10.1111/irv.12773
299. Kong, T.-k., Longer incubation period of coronavirus disease 2019 (COVID-19) in older adults.
AGING MEDICINE 2020, 3 (2), 102-109. https://onlinelibrary.wiley.com/doi/abs/10.1002/agm2.12114
300. Kong, W.-H.; Zhao, R.; Zhou, J.-B.; Wang, F.; Kong, D.-G.; Sun, J.-B.; Ruan, Q.-F.; Liu, M.-Q., Serologic
Response to SARS-CoV-2 in COVID-19 Patients with Different Severity. Virologica Sinica 2020.
https://doi.org/10.1007/s12250-020-00270-x
301. Koo, J. R.; Cook, A. R.; Park, M.; Sun, Y.; Sun, H.; Lim, J. T.; Tam, C.; Dickens, B. L., Interventions to
mitigate early spread of SARS-CoV-2 in Singapore: a modelling study. The Lancet Infectious Diseases
2020, 20 (6), 678-688. https://doi.org/10.1016/S1473-3099(20)30162-6
302. Korber, B.; Fischer, W. M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.;
Giorgi, E. E.; Bhattacharya, T.; Foley, B.; Hastie, K. M.; Parker, M. D.; Partridge, D. G.; Evans, C. M.;
Freeman, T. M.; de Silva, T. I.; McDanal, C.; Perez, L. G.; Tang, H.; Moon-Walker, A.; Whelan, S. P.;
LaBranche, C. C.; Saphire, E. O.; Montefiori, D. C.; Angyal, A.; Brown, R. L.; Carrilero, L.; Green, L. R.;
Groves, D. C.; Johnson, K. J.; Keeley, A. J.; Lindsey, B. B.; Parsons, P. J.; Raza, M.; Rowland-Jones, S.;
Smith, N.; Tucker, R. M.; Wang, D.; Wyles, M. D., Tracking changes in SARS-CoV-2 Spike: evidence that
D614G increases infectivity of the COVID-19 virus. Cell 2020. https://doi.org/10.1016/j.cell.2020.06.043
303. Korevaar, D. A.; Kootte, R. S.; Smits, L. P.; van den Aardweg, J. G.; Bonta, P. I.; Schinkel, J.; Vigeveno,
R. M.; van den Berk, I. A. H.; Scheerder, M. J.; Lemkes, B. A.; Goorhuis, A.; Beenen, L. F. M.; Annema, J.
T., Added value of chest CT in suspected COVID-19: an analysis of 239 patients. European Respiratory
Journal 2020, 2001377.
https://erj.ersjournals.com/content/erj/early/2020/06/25/13993003.01377-
2020.full.pdf
304. Korevaar, H. M.; Becker, A. D.; Miller, I. F.; Grenfell, B. T.; Metcalf, C. J. E.; Mina, M. J., Quantifying
the impact of US state non-pharmaceutical interventions on COVID-19 transmission. medRxiv 2020,
2020.06.30.20142877.
https://www.medrxiv.org/content/medrxiv/early/2020/07/01/2020.06.30.20142877.full.pdf
305. Kraemer, M. U. G.; Yang, C.-H.; Gutierrez, B.; Wu, C.-H.; Klein, B.; Pigott, D. M.; du Plessis, L.; Faria,
N. R.; Li, R.; Hanage, W. P.; Brownstein, J. S.; Layan, M.; Vespignani, A.; Tian, H.; Dye, C.; Pybus, O. G.;
Scarpino, S. V., The effect of human mobility and control measures on the COVID-19 epidemic in China.
Science 2020, eabb4218.
https://science.sciencemag.org/content/sci/early/2020/03/25/science.abb4218.full.pdf
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 46
306. Kratzel, A.; Todt, D.; V'kovski, P.; Steiner, S.; Gultom, M. L.; Thao, T. T. N.; Ebert, N.; Holwerda, M.;
Steinmann, J.; Niemeyer, D.; Dijkman, R.; Kampf, G.; Drosten, C.; Steinmann, E.; Thiel, V.; Pfaender, S.,
Efficient inactivation of SARS-CoV-2 by WHO-recommended hand rub formulations and alcohols. bioRxiv
2020, 2020.03.10.986711.
https://www.biorxiv.org/content/biorxiv/early/2020/03/17/2020.03.10.986711.full.pdf
307. Krever, M.; Picheta, R., A mink may have infected a human with Covid-19, Dutch authorities
believe. CNN 2020.
https://edition.cnn.com/2020/05/20/europe/coronavirus-mink-netherlands-testing-
intl/index.html
308. Kucharski, A. J.; Klepac, P.; Conlan, A. J. K.; Kissler, S. M.; Tang, M. L.; Fry, H.; Gog, J. R.; Edmunds,
W. J., Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing
transmission of SARS-CoV-2 in different settings: a mathematical modelling study. Lancet Infect Dis
2020.
309. Kucharski, A. J.; Russell, T. W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R. M.; Sun, F.; Jit,
M.; Munday, J. D., Early dynamics of transmission and control of COVID-19: a mathematical modelling
study. The lancet infectious diseases 2020.
310. Kucirka, L. M.; Lauer, S. A.; Laeyendecker, O.; Boon, D., Variation in False-Negative Rate of Reverse
Transcriptase Polymerase Chain ReactionBased SARS-CoV-2 Tests by Time Since Exposure. Annals of
Internal Medicine 2020, 0 (0), null. https://www.acpjournals.org/doi/abs/10.7326/M20-1495
311. Lai, S.; Ruktanonchai, N. W.; Zhou, L.; Prosper, O.; Luo, W.; Floyd, J. R.; Wesolowski, A.; Santillana,
M.; Zhang, C.; Du, X.; Yu, H.; Tatem, A. J., Effect of non-pharmaceutical interventions to contain COVID-
19 in China. Nature 2020. https://doi.org/10.1038/s41586-020-2293-x
312. Lam, T. T.-Y.; Shum, M. H.-H.; Zhu, H.-C.; Tong, Y.-G.; Ni, X.-B.; Liao, Y.-S.; Wei, W.; Cheung, W. Y.-
M.; Li, W.-J.; Li, L.-F.; Leung, G. M.; Holmes, E. C.; Hu, Y.-L.; Guan, Y., Identifying SARS-CoV-2 related
coronaviruses in Malayan pangolins. Nature 2020. https://doi.org/10.1038/s41586-020-2169-0
313. Lan, L.; Xu, D.; Ye, G.; Xia, C.; Wang, S.; Li, Y.; Xu, H., Positive RT-PCR Test Results in Patients
Recovered From COVID-19. Jama 2020. https://jamanetwork.com/journals/jama/fullarticle/2762452
314. LANL, COVID-19 Confirmed and Forecasted Case Data. https://covid-19.bsvgateway.org/.
315. Lasry, A.; Kidder, D.; Hast, M.; Poovey, J.; Sunshine, G.; Zviedrite, N.; Ahmed, F.; Ethier, K. A., Timing
of community mitigation and changes in reported COVID-19 and community mobility―four US
metropolitan areas, February 26April 1, 2020. morbidity and Mortality Weekly Report 2020, 69, 451-
457. https://www.cdc.gov/mmwr/volumes/69/wr/mm6915e2.htm
316. Lassaunière, R.; Frische, A.; Harboe, Z. B.; Nielsen, A. C.; Fomsgaard, A.; Krogfelt, K. A.; Jørgensen, C.
S., Evaluation of nine commercial SARS-CoV-2 immunoassays. medRxiv 2020, 2020.04.09.20056325.
https://www.medrxiv.org/content/medrxiv/early/2020/04/10/2020.04.09.20056325.full.pdf
317. Lau, S., Coronavirus: WHO official says there’s no evidence of ‘reinfected’ patients in China
https://www.scmp.com/news/china/society/article/3074045/coronavirus-who-official-says-theres-no-
evidence-reinfected.
318. Lauer, S. A.; Grantz, K. H.; Bi, Q.; Jones, F. K.; Zheng, Q.; Meredith, H. R.; Azman, A. S.; Reich, N. G.;
Lessler, J., The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported
Confirmed Cases: Estimation and Application. Annals of Internal Medicine 2020.
https://doi.org/10.7326/M20-0504
319. Lavezzo, E.; Franchin, E.; Ciavarella, C.; Cuomo-Dannenburg, G.; Barzon, L.; Del Vecchio, C.; Rossi, L.;
Manganelli, R.; Loregian, A.; Navarin, N.; Abate, D.; Sciro, M.; Merigliano, S.; De Canale, E.; Vanuzzo, M.
C.; Besutti, V.; Saluzzo, F.; Onelia, F.; Pacenti, M.; Parisi, S.; Carretta, G.; Donato, D.; Flor, L.; Cocchio, S.;
Masi, G.; Sperduti, A.; Cattarino, L.; Salvador, R.; Nicoletti, M.; Caldart, F.; Castelli, G.; Nieddu, E.; Labella,
B.; Fava, L.; Drigo, M.; Gaythorpe, K. A. M.; Ainslie, K. E. C.; Baguelin, M.; Bhatt, S.; Boonyasiri, A.; Boyd,
O.; Cattarino, L.; Ciavarella, C.; Coupland, H. L.; Cucunubá, Z.; Cuomo-Dannenburg, G.; Djafaara, B. A.;
Donnelly, C. A.; Dorigatti, I.; van Elsland, S. L.; FitzJohn, R.; Flaxman, S.; Gaythorpe, K. A. M.; Green, W.
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 47
D.; Hallett, T.; Hamlet, A.; Haw, D.; Imai, N.; Jeffrey, B.; Knock, E.; Laydon, D. J.; Mellan, T.; Mishra, S.;
Nedjati-Gilani, G.; Nouvellet, P.; Okell, L. C.; Parag, K. V.; Riley, S.; Thompson, H. A.; Unwin, H. J. T.;
Verity, R.; Vollmer, M. A. C.; Walker, P. G. T.; Walters, C. E.; Wang, H.; Wang, Y.; Watson, O. J.;
Whittaker, C.; Whittles, L. K.; Xi, X.; Ferguson, N. M.; Brazzale, A. R.; Toppo, S.; Trevisan, M.; Baldo, V.;
Donnelly, C. A.; Ferguson, N. M.; Dorigatti, I.; Crisanti, A.; Imperial College, C.-R. T., Suppression of a
SARS-CoV-2 outbreak in the Italian municipality of Vo’. Nature 2020.
https://doi.org/10.1038/s41586-
020-2488-1
320. Le Bert, N.; Tan, A. T.; Kunasegaran, K.; Tham, C. Y. L.; Hafezi, M.; Chia, A.; Chng, M. H. Y.; Lin, M.;
Tan, N.; Linster, M.; Chia, W. N.; Chen, M. I. C.; Wang, L.-F.; Ooi, E. E.; Kalimuddin, S.; Tambyah, P. A.;
Low, J. G.-H.; Tan, Y.-J.; Bertoletti, A., SARS-CoV-2-specific T cell immunity in cases of COVID-19 and
SARS, and uninfected controls. Nature 2020. https://doi.org/10.1038/s41586-020-2550-z
321. Leclerc, Q.; Fuller, N.; Knight, L.; null, n.; Funk, S.; Knight, G., What settings have been linked to
SARS-CoV-2 transmission clusters? [version 2; peer review: 2 approved]. Wellcome Open Research 2020,
5 (83). https://wellcomeopenresearch.org/articles/5-83/v2
322. Lee, J.; Hughes, T.; Lee, M.-H.; Field, H.; Rovie-Ryan, J. J.; Sitam, F. T.; Sipangkui, S.; Nathan, S. K. S.
S.; Ramirez, D.; Kumar, S. V.; Lasimbang, H.; Epstein, J. H.; Daszak, P., No evidence of coronaviruses or
other potentially zoonotic viruses in Sunda pangolins (<em>Manis javanica</em>) entering the wildlife
trade via Malaysia. bioRxiv 2020, 2020.06.19.158717.
https://www.biorxiv.org/content/biorxiv/early/2020/06/19/2020.06.19.158717.full.pdf
323. Lee, T. C.; MacKenzie, L. J.; McDonald, E. G.; Tong, S. Y. C., An Observational Cohort Study of
Hydroxychloroquine and Azithromycin for COVID-19: (Can&#x2019;t Get No) Satisfaction. International
Journal of Infectious Diseases 2020. https://doi.org/10.1016/j.ijid.2020.06.095
324. Lee, Y.-H.; Hong, C. M.; Kim, D. H.; Lee, T. H.; Lee, J., Clinical Course of Asymptomatic and Mildly
Symptomatic Patients with Coronavirus Disease Admitted to Community Treatment Centers, South
Korea. Emerging Infectious Disease journal 2020, 26 (10).
https://wwwnc.cdc.gov/eid/article/26/10/20-
1620_article
325. Leung, K.; Wu, J. T.; Liu, D.; Leung, G. M., First-wave COVID-19 transmissibility and severity in China
outside Hubei after control measures, and second-wave scenario planning: a modelling impact
assessment. The Lancet. https://doi.org/10.1016/S0140-6736(20)30746-7
326. Leung, N. H. L.; Chu, D. K. W.; Shiu, E. Y. C.; Chan, K.-H.; McDevitt, J. J.; Hau, B. J. P.; Yen, H.-L.; Li, Y.;
Ip, D. K. M.; Peiris, J. S. M.; Seto, W.-H.; Leung, G. M.; Milton, D. K.; Cowling, B. J., Respiratory virus
shedding in exhaled breath and efficacy of face masks. Nature Medicine 2020.
https://doi.org/10.1038/s41591-020-0843-2
327. Levi, M.; Thachil, J.; Iba, T.; Levy, J. H., Coagulation abnormalities and thrombosis in patients with
COVID-19. The Lancet Haematology 2020. https://doi.org/10.1016/S2352-3026(20)30145-9
328. Lewis, D., Is the coronavirus airborne? Experts can’t agree. Nature 2020. 10.1038/d41586-020-
00974-w
329. Li, D.; Jin, M.; Bao, P.; Zhao, W.; Zhang, S., Clinical Characteristics and Results of Semen Tests
Among Men With Coronavirus Disease 2019. JAMA Network Open 2020, 3 (5), e208292-e208292.
https://doi.org/10.1001/jamanetworkopen.2020.8292
330. Li, K.; Wohlford-Lenane, C.; Perlman, S.; Zhao, J.; Jewell, A. K.; Reznikov, L. R.; Gibson-Corley, K. N.;
Meyerholz, D. K.; McCray, P. B., Jr., Middle East Respiratory Syndrome Coronavirus Causes Multiple
Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4. J Infect Dis
2016, 213 (5), 712-22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747621/pdf/jiv499.pdf
331. Li, L.; Zhang, W.; Hu, Y.; Tong, X.; Zheng, S.; Yang, J.; Kong, Y.; Ren, L.; Wei, Q.; Mei, H.; Hu, C.; Tao,
C.; Yang, R.; Wang, J.; Yu, Y.; Guo, Y.; Wu, X.; Xu, Z.; Zeng, L.; Xiong, N.; Chen, L.; Wang, J.; Man, N.; Liu,
Y.; Xu, H.; Deng, E.; Zhang, X.; Li, C.; Wang, C.; Su, S.; Zhang, L.; Wang, J.; Wu, Y.; Liu, Z., Effect of
Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 48
threatening COVID-19: A Randomized Clinical Trial. JAMA 2020.
https://doi.org/10.1001/jama.2020.10044
332. Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K. S. M.; Lau, E. H. Y.; Wong, J.
Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang,
R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.;
Ma, Z.; Zhang, Y.; Shi, G.; Lam, T. T. Y.; Wu, J. T.; Gao, G. F.; Cowling, B. J.; Yang, B.; Leung, G. M.; Feng, Z.,
Early Transmission Dynamics in Wuhan, China, of Novel CoronavirusInfected Pneumonia. New England
Journal of Medicine 2020. https://www.nejm.org/doi/full/10.1056/NEJMoa2001316
https://www.nejm.org/doi/10.1056/NEJMoa2001316
333. Li, R.; Pei, S.; Chen, B.; Song, Y.; Zhang, T.; Yang, W.; Shaman, J., Substantial undocumented
infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). Science 2020, eabb3221.
https://science.sciencemag.org/content/sci/early/2020/03/13/science.abb3221.full.pdf
334. Li, W.; Zhang, B.; Lu, J.; Liu, S.; Chang, Z.; Cao, P.; Liu, X.; Zhang, P.; Ling, Y.; Tao, K.; Chen, J., The
characteristics of household transmission of COVID-19. Clinical Infectious Diseases 2020.
https://doi.org/10.1093/cid/ciaa450
335. Li, X.; Giorgi, E. E.; Marichannegowda, M. H.; Foley, B.; Xiao, C.; Kong, X.-P.; Chen, Y.; Gnanakaran,
S.; Korber, B.; Gao, F., Emergence of SARS-CoV-2 through recombination and strong purifying selection.
Science Advances 2020, eabb9153.
https://advances.sciencemag.org/content/advances/early/2020/05/28/sciadv.abb9153.full.pdf
336. Li, X.; Xiao, K.; Chen, X.; Liang, X.; Zhang, X.; Zhang, Z.; Zhai, J.; Wang, R.; Zhou, N.; Chen, Z.-J.; Su, R.;
Zhou, F.; Holmes, E. C.; Irwin, D. M.; Chen, R.-A.; He, Q.; Wu, Y.-J.; Wang, C.; Du, X.-Q.; Peng, S.-M.; Xie,
W.-J.; Shan, F.; Li, W.-P.; Dai, J.-W.; Shen, X.; Feng, Y.; Xiao, L.; Chen, W.; Shen, Y., Pathogenicity, tissue
tropism and potential vertical transmission of SARSr-CoV-2 in Malayan pangolins. bioRxiv 2020,
2020.06.22.164442. http://biorxiv.org/content/early/2020/06/22/2020.06.22.164442.abstract
337. Li, X.; Zai, J.; Zhao, Q.; Nie, Q.; Li, Y.; Foley, B. T.; Chaillon, A., Evolutionary history, potential
intermediate animal host, and cross-species analyses of SARS-CoV-2. Journal of Medical Virology 2020,
n/a (n/a). https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25731
338. Li, Y.; Qian, H.; Hang, J.; Chen, X.; Hong, L.; Liang, P.; Li, J.; Xiao, S.; Wei, J.; Liu, L.; Kang, M., Evidence
for probable aerosol transmission of SARS-CoV-2 in a poorly ventilated restaurant. medRxiv 2020,
2020.04.16.20067728.
https://www.medrxiv.org/content/medrxiv/early/2020/04/22/2020.04.16.20067728.full.pdf
339. Li, Y.; Xie, Z.; Lin, W.; Cai, W.; Wen, C.; Guan, Y.; Mo, X.; Wang, J.; Wang, Y.; Peng, P.; Chen, X.; Hong,
W.; Xiao, G.; Liu, J.; Zhang, L.; Hu, F.; Li, F.; Zhang, F.; Deng, X.; Li, L., Efficacy and safety of
lopinavir/ritonavir or arbidol in adult patients with mild/moderate COVID-19: an exploratory
randomized controlled trial. Med. https://doi.org/10.1016/j.medj.2020.04.001
340. Lisboa Bastos, M.; Tavaziva, G.; Abidi, S. K.; Campbell, J. R.; Haraoui, L.-P.; Johnston, J. C.; Lan, Z.;
Law, S.; MacLean, E.; Trajman, A.; Menzies, D.; Benedetti, A.; Ahmad Khan, F., Diagnostic accuracy of
serological tests for covid-19: systematic review and meta-analysis. BMJ 2020, 370, m2516.
https://www.bmj.com/content/bmj/370/bmj.m2516.full.pdf
341. Liu, A., China's CanSino Bio advances COVID-19 vaccine into phase 2 on preliminary safety data.
Fierce Pharma 2020.
https://www.fiercepharma.com/vaccines/china-s-cansino-bio-advances-covid-19-
vaccine-into-phase-2-preliminary-safety-data
342. Liu, A., China's Sinopharm touts 100% antibody response for COVID-19 vaccine it's already giving to
workers
https://www.fiercepharma.com/pharma-asia/china-s-sinopharm-touts-100-antibody-response-
for-covid-19-vaccine-it-s-already-giving.
343. Liu, L.; To, K. K.-W.; Chan, K.-H.; Wong, Y.-C.; Zhou, R.; Kwan, K.-Y.; Fong, C. H.-Y.; Chen, L.-L.; Choi,
C. Y.-K.; Lu, L.; Tsang, O. T.-Y.; Leung, W.-S.; To, W.-K.; Hung, I. F.-N.; Yuen, K.-Y.; Chen, Z., High
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 49
neutralizing antibody titer in intensive care unit patients with COVID-19. Emerging Microbes & Infections
2020, 1-30. https://doi.org/10.1080/22221751.2020.1791738
344. Liu, P.; Chen, W.; Chen, J.-P., Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection
of Malayan Pangolins (Manis javanica). Viruses 2019, 11 (11), 979.
https://www.mdpi.com/1999-
4915/11/11/979
345. Liu, P.; Jiang, J.-Z.; Wan, X.-F.; Hua, Y.; Li, L.; Zhou, J.; Wang, X.; Hou, F.; Chen, J.; Zou, J.; Chen, J.,
Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLOS Pathogens 2020,
16 (5), e1008421. https://doi.org/10.1371/journal.ppat.1008421
346. Liu, P.; Jiang, J.-Z.; Wan, X.-F.; Hua, Y.; Wang, X.; Hou, F.; Chen, J.; Zou, J.; Chen, J., Are pangolins the
intermediate host of the 2019 novel coronavirus (2019-nCoV) ? bioRxiv 2020, 2020.02.18.954628.
http://biorxiv.org/content/early/2020/02/20/2020.02.18.954628.abstract
347. Liu, R.; Woo, R., CanSino's COVID-19 vaccine candidate approved for military use in China.
https://uk.reuters.com/article/us-health-coronavirus-china-vaccine/cansinos-covid-19-vaccine-
candidate-approved-for-military-use-in-china-idUKKBN2400DZ.
348. Liu, S. T. H.; Lin, H.-M.; Baine, I.; Wajnberg, A.; Gumprecht, J. P.; Rahman, F.; Rodriguez, D.; Tandon,
P.; Bassily-Marcus, A.; Bander, J.; Sanky, C.; Dupper, A.; Zheng, A.; Altman, D. R.; Chen, B. K.; Krammer,
F.; Mendu, D. R.; Firpo-Betancourt, A.; Levin, M. A.; Bagiella, E.; Casadevall, A.; Cordon-Cardo, C.; Jhang,
J. S.; Arinsburg, S. A.; Reich, D. L.; Aberg, J. A.; Bouvier, N. M., Convalescent plasma treatment of severe
COVID-19: A matched control study. medRxiv 2020, 2020.05.20.20102236.
https://www.medrxiv.org/content/medrxiv/early/2020/05/22/2020.05.20.20102236.full.pdf
349. Liu, W.; Zhang, Q.; Chen, J.; Xiang, R.; Song, H.; Shu, S.; Chen, L.; Liang, L.; Zhou, J.; You, L.; Wu, P.;
Zhang, B.; Lu, Y.; Xia, L.; Huang, L.; Yang, Y.; Liu, F.; Semple, M. G.; Cowling, B. J.; Lan, K.; Sun, Z.; Yu, H.;
Liu, Y., Detection of Covid-19 in Children in Early January 2020 in Wuhan, China. New England Journal of
Medicine 2020. https://www.nejm.org/doi/full/10.1056/NEJMc2003717
350. Liu, Y.; Funk, S.; Flasche, S., The Contribution of Pre-symptomatic Transmission to the COVID-19
Outbreak; London School of Hygiene and Tropical Medicine: 2020.
https://cmmid.github.io/topics/covid19/control-measures/pre-symptomatic-transmission.html
351. Liu, Y.; Hu, G.; Wang, Y.; Zhao, X.; Ji, F.; Ren, W.; Gong, M.; Ju, X.; Li, C.; Hong, J.; Zhu, Y.; Cai, X.; Wu,
J.; Lan, X.; Xie, Y.; Wang, X.; Yuan, Z.; Zhang, R.; Ding, Q., Functional and Genetic Analysis of Viral
Receptor ACE2 Orthologs Reveals a Broad Potential Host Range of SARS-CoV-2. bioRxiv 2020,
2020.04.22.046565.
https://www.biorxiv.org/content/biorxiv/early/2020/05/03/2020.04.22.046565.full.pdf
352. Liu, Y.; Li, T.; Deng, Y.; Liu, S.; Zhang, D.; Li, H.; Wang, X.; Jia, L.; Han, J.; Bei, Z.; Zhou, Y.; Li, L.; Li, J.,
Stability of SARS-CoV-2 on environmental surfaces and in human excreta. medRxiv 2020,
2020.05.07.20094805.
https://www.medrxiv.org/content/medrxiv/early/2020/05/12/2020.05.07.20094805.full.pdf
353. Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.; Gali, N. K.; Sun, L.; Duan, Y.; Cai, J.; Westerdahl, D.; Liu, X.;
Xu, K.; Ho, K.-f.; Kan, H.; Fu, Q.; Lan, K., Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals.
Nature 2020. https://doi.org/10.1038/s41586-020-2271-3
354. Lokken, E. M.; Walker, C. L.; Delaney, S.; Kachikis, A.; Kretzer, N. M.; Erickson, A.; Resnick, R.;
Vanderhoeven, J.; Hwang, J. K.; Barnhart, N.; Rah, J.; McCartney, S. A.; Ma, K. K.; Huebner, E. M.;
Thomas, C.; Sheng, J. S.; Paek, B. W.; Retzlaff, K.; Kline, C. R.; Munson, J.; Blain, M.; Lacourse, S. M.;
Deutsch, G.; Adams Waldorf, K., Clinical Characteristics of 46 Pregnant Women with a SARS-CoV-2
Infection in Washington State. Am J Obstet Gynecol 2020.
355. Long, Q.-X.; Liu, B.-Z.; Deng, H.-J.; Wu, G.-C.; Deng, K.; Chen, Y.-K.; Liao, P.; Qiu, J.-F.; Lin, Y.; Cai, X.-
F.; Wang, D.-Q.; Hu, Y.; Ren, J.-H.; Tang, N.; Xu, Y.-Y.; Yu, L.-H.; Mo, Z.; Gong, F.; Zhang, X.-L.; Tian, W.-G.;
Hu, L.; Zhang, X.-X.; Xiang, J.-L.; Du, H.-X.; Liu, H.-W.; Lang, C.-H.; Luo, X.-H.; Wu, S.-B.; Cui, X.-P.; Zhou, Z.;
Zhu, M.-M.; Wang, J.; Xue, C.-J.; Li, X.-F.; Wang, L.; Li, Z.-J.; Wang, K.; Niu, C.-C.; Yang, Q.-J.; Tang, X.-J.;
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 50
Zhang, Y.; Liu, X.-M.; Li, J.-J.; Zhang, D.-C.; Zhang, F.; Liu, P.; Yuan, J.; Li, Q.; Hu, J.-L.; Chen, J.; Huang, A.-
L., Antibody responses to SARS-CoV-2 in patients with COVID-19. Nature Medicine 2020.
https://doi.org/10.1038/s41591-020-0897-1
356. Long, Q.-X.; Tang, X.-J.; Shi, Q.-L.; Li, Q.; Deng, H.-J.; Yuan, J.; Hu, J.-L.; Xu, W.; Zhang, Y.; Lv, F.-J.; Su,
K.; Zhang, F.; Gong, J.; Wu, B.; Liu, X.-M.; Li, J.-J.; Qiu, J.-F.; Chen, J.; Huang, A.-L., Clinical and
immunological assessment of asymptomatic SARS-CoV-2 infections. Nature Medicine 2020.
https://doi.org/10.1038/s41591-020-0965-6
357. Longcom, A. Z., Phase I Clinical Study of Recombinant Novel Coronavirus Vaccine.
https://clinicaltrials.gov/ct2/show/NCT04445194?term=NCT04445194&draw=2&rank=1
.
358. Lu, J.; Plessis, L. d.; Liu, Z.; Hill, V.; Kang, M.; Lin, H.; Sun, J.; Francois, S.; Kraemer, M. U. G.; Faria, N.
R.; McCrone, J. T.; Peng, J.; Xiong, Q.; Yuan, R.; Zeng, L.; Zhou, P.; Liang, C.; Yi, L.; Liu, J.; Xiao, J.; Hu, J.;
Liu, T.; Ma, W.; Li, W.; Su, J.; Zheng, H.; Peng, B.; Fang, S.; Su, W.; Li, K.; Sun, R.; Bai, R.; Tang, X.; Liang,
M.; Quick, J.; Song, T.; Rambaut, A.; Loman, N.; Raghwani, J.; Pybus, O.; Ke, C., Genomic epidemiology of
SARS-CoV-2 in Guangdong Province, China. medRxiv 2020, 2020.04.01.20047076.
https://www.medrxiv.org/content/medrxiv/early/2020/04/04/2020.04.01.20047076.full.pdf
359. Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.;
Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan,
J.; Xie, Z.; Ma, J.; Liu, W. J.; Wang, D.; Xu, W.; Holmes, E. C.; Gao, G. F.; Wu, G.; Chen, W.; Shi, W.; Tan,
W., Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins
and receptor binding. The Lancet 2020. https://doi.org/10.1016/S0140-6736(20)30251-8
360. Lu, S.; Zhao, Y.; Yu, W.; Yang, Y.; Gao, J.; Wang, J.; Kuang, D.; Yang, M.; Yang, J.; Ma, C.; Xu, J.; Qian,
X.; Li, H.; Zhao, S.; Li, J.; Wang, H.; Long, H.; Zhou, J.; Luo, F.; Ding, K.; Wu, D.; Zhang, Y.; Dong, Y.; Liu, Y.;
Zheng, Y.; Lin, X.; Jiao, L.; Zheng, H.; Dai, Q.; Sun, Q.; Hu, Y.; Ke, C.; Liu, H.; Peng, X., Comparison of SARS-
CoV-2 infections among 3 species of non-human primates. bioRxiv 2020, 2020.04.08.031807.
https://www.biorxiv.org/content/biorxiv/early/2020/04/12/2020.04.08.031807.full.pdf
361. Lu, X.; Zhang, L.; Du, H.; Zhang, J.; Li, Y. Y.; Qu, J.; Zhang, W.; Wang, Y.; Bao, S.; Li, Y.; Wu, C.; Liu, H.;
Liu, D.; Shao, J.; Peng, X.; Yang, Y.; Liu, Z.; Xiang, Y.; Zhang, F.; Silva, R. M.; Pinkerton, K. E.; Shen, K.; Xiao,
H.; Xu, S.; Wong, G. W. K., SARS-CoV-2 Infection in Children. New England Journal of Medicine 2020.
https://www.nejm.org/doi/full/10.1056/NEJMc2005073
362. Lu, Y.; Li, Y.; Deng, W.; Liu, M.; He, Y.; Huang, L.; Lv, M.; Li, J.; Du, H., Symptomatic Infection is
Associated with Prolonged Duration of Viral Shedding in Mild Coronavirus Disease 2019: A Retrospective
Study of 110 Children in Wuhan. Pediatr Infect Dis J 2020.
363. Lui, G.; Lai, C. K. C.; Chen, Z.; Tong, S. L. Y.; Ho, W. C. S.; Yeung, A. C. M.; Boon, S.; Ng, R. W. Y.; Chan,
P. K. S., SARS-CoV-2 RNA Detection on Disposable Wooden Chopsticks, Hong Kong. Emerging Infectious
Disease journal 2020, 26 (9). https://wwwnc.cdc.gov/eid/article/26/9/20-2135_article
364. Luo, W.; Majumder, M. S.; Liu, D.; Poirier, C.; Mandl, K. D.; Lipsitch, M.; Santillana, M., The role of
absolute humidity on transmission rates of the COVID-19 outbreak. medRxiv 2020,
2020.02.12.20022467.
https://www.medrxiv.org/content/medrxiv/early/2020/02/17/2020.02.12.20022467.full.pdf
365. Luo, Y.; Trevathan, E.; Qian, Z.; Li, Y.; Li, J.; Xiao, W.; Tu, N.; Zeng, Z.; Mo, P.; Xiong, Y.; Ye, G.,
Asymptomatic SARS-CoV-2 Infection in Household Contacts of a Healthcare Provider, Wuhan, China.
Emerging Infectious Disease journal 2020, 26 (8).
https://wwwnc.cdc.gov/eid/article/26/8/20-
1016_article
366. Lysol, EPA Approves Lysol Disinfectant Spray For Use Against COVID-19. Lysol: 2020.
https://www.prnewswire.com/news-releases/epa-approves-lysol-disinfectant-spray-for-use-against-
covid-19-301088721.html
367. MacLean, O. A.; Orton, R. J.; Singer, J. B.; Robertson, D. L., No evidence for distinct types in the
evolution of SARS-CoV-2. Virus Evolution 2020. https://doi.org/10.1093/ve/veaa034
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 51
368. Madariaga, M. L. L.; Guthmiller, J.; Schrantz, S.; Jansen, M.; Christenson, C.; Kumar, M.; Prochaska,
M.; Wool, G.; Durkin, A.; Oh, W. H.; Trockman, L.; Vigneswaran, J.; Keskey, R.; Shaw, D. G.; Dugan, H.;
Zheng, N.; Cobb, M.; Utset, H.; Wang, J.; Stovicek, O.; Bethel, C.; Matushek, S.; Giurcanu, M.; Beavis, K.;
diSabato, D.; Meltzer, D.; Ferguson, M.; Kress, J. P.; Shanmugarajah, K.; Matthews, J.; Fung, J.; Wilson, P.;
Alverdy, J. C.; Donington, J., Clinical predictors of donor antibody titer and correlation with recipient
antibody response in a COVID-19 convalescent plasma clinical trial. medRxiv 2020,
2020.06.21.20132944. http://medrxiv.org/content/early/2020/06/23/2020.06.21.20132944.abstract
369. Magagnoli, J.; Narendran, S.; Pereira, F.; Cummings, T. H.; Hardin, J. W.; Sutton, S. S.; Ambati, J.,
Outcomes of hydroxychloroquine usage in United States veterans hospitalized with COVID-19. Med
2020. https://doi.org/10.1016/j.medj.2020.06.001
370. Magleby, R.; Westblade, L. F.; Trzebucki, A.; Simon, M. S.; Rajan, M.; Park, J.; Goyal, P.; Safford, M.
M.; Satlin, M. J., Impact of SARS-CoV-2 Viral Load on Risk of Intubation and Mortality Among
Hospitalized Patients with Coronavirus Disease 2019. Clinical Infectious Diseases 2020.
https://doi.org/10.1093/cid/ciaa851
371. Mahévas, M.; Tran, V.-T.; Roumier, M.; Chabrol, A.; Paule, R.; Guillaud, C.; Fois, E.; Lepeule, R.;
Szwebel, T.-A.; Lescure, F.-X.; Schlemmer, F.; Matignon, M.; Khellaf, M.; Crickx, E.; Terrier, B.; Morbieu,
C.; Legendre, P.; Dang, J.; Schoindre, Y.; Pawlotsky, J.-M.; Michel, M.; Perrodeau, E.; Carlier, N.; Roche,
N.; de Lastours, V.; Ourghanlian, C.; Kerneis, S.; Ménager, P.; Mouthon, L.; Audureau, E.; Ravaud, P.;
Godeau, B.; Gallien, S.; Costedoat-Chalumeau, N., Clinical efficacy of hydroxychloroquine in patients
with covid-19 pneumonia who require oxygen: observational comparative study using routine care data.
BMJ 2020, 369, m1844. http://www.bmj.com/content/369/bmj.m1844.abstract
372. Mahevas, M.; Tran, V.-T.; Roumier, M.; Chabrol, A.; Paule, R.; Guillaud, C.; Gallien, S.; Lepeule, R.;
Szwebel, T.-A.; Lescure, X.; Schlemmer, F.; Matignon, M.; Khellaf, M.; Crickx, E.; Terrier, B.; Morbieu, C.;
Legendre, P.; Dang, J.; Schoindre, Y.; Pawlotski, J.-M.; Michel, M.; Perrodeau, E.; Carlier, N.; Roche, N.;
De Lastours, V.; Mouthon, L.; Audureau, E.; Ravaud, P.; Godeau, B.; Costedoat, N., No evidence of clinical
efficacy of hydroxychloroquine in patients hospitalized for COVID-19 infection with oxygen requirement:
results of a study using routinely collected data to emulate a target trial. medRxiv 2020,
2020.04.10.20060699.
https://www.medrxiv.org/content/medrxiv/early/2020/04/14/2020.04.10.20060699.full.pdf
373. Maier, B. F.; Brockmann, D., Effective containment explains subexponential growth in recent
confirmed COVID-19 cases in China. Science 2020, 368 (6492), 742-746.
https://science.sciencemag.org/content/sci/368/6492/742.full.pdf
374. Maisonnasse, P.; Guedj, J.; Contreras, V.; Behillil, S.; Solas, C.; Marlin, R.; Naninck, T.; Pizzorno, A.;
Lemaitre, J.; Gonçalves, A.; Kahlaoui, N.; Terrier, O.; Fang, R. H. T.; Enouf, V.; Dereuddre-Bosquet, N.;
Brisebarre, A.; Touret, F.; Chapon, C.; Hoen, B.; Lina, B.; Calatrava, M. R.; van der Werf, S.; de
Lamballerie, X.; Le Grand, R., Hydroxychloroquine use against SARS-CoV-2 infection in non-human
primates. Nature 2020. https://doi.org/10.1038/s41586-020-2558-4
375. Majmundar, M.; Kansara, T.; Lenik, J. M.; Park, H.; Ghosh, K.; Doshi, R.; Shah, P.; Kumar, A.; Amin,
H.; Habtes, I., Efficacy of Corticosteroids in Non-Intensive Care Unit Patients with COVID-19 Pneumonia
from the New York Metropolitan region. medRxiv 2020, 2020.07.02.20145565.
http://medrxiv.org/content/early/2020/07/04/2020.07.02.20145565.abstract
376. Majumder, M.; Mandl, K., Early transmissibility assessment of a novel coronavirus in Wuhan, China.
SSRN 2020. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3524675
377. Mallapaty, S., Coronavirus can infect cats dogs, not so much. Nature 2020.
https://www.nature.com/articles/d41586-020-00984-8
378. Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.;
Li, Y.; Hu, B., Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in
Wuhan, China. JAMA Neurology 2020, 77 (6), 683-690. https://doi.org/10.1001/jamaneurol.2020.1127
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 52
379. Martinez-Resendez, M. F.; Castilleja-Leal, F.; Torres-Quintanilla, A.; Rojas-Martinez, A.; Garcia-Rivas,
G.; Ortiz-Lopez, R.; Trevino, V.; Lara-Medrano, R.; Villanueva-Lozano, H.; Ramirez-Elizondo, T.; Sanchez-
Nava, V.; Moreno-Hoyos, F.; Martinez-Thomae, A.; Hernandez-Torre, M.; Diaz-Olachea, C.; Cardona-
Huerta, S.; de la Rosa-Pacheco, S.; Diaz-Garza, C.; Reynoso-Lobo, P.; Marroquin-Escamilla, A. R.; Herrera-
Gamboa, J. G.; Alvarado-Monroy, F. M.; Aguayo-Millan, C. D.; Villegas-Macedo, F. F.; Flores-Osorio, J. E.;
Davila-Gonzalez, D.; Diaz-Sanchez, M. E.; Torre-Amione, G., Initial experience in Mexico with
convalescent plasma in COVID-19 patients with severe respiratory failure, a retrospective case series.
medRxiv 2020, 2020.07.14.20144469.
http://medrxiv.org/content/early/2020/07/20/2020.07.14.20144469.abstract
380. Martinez-Sanz, J.; Muriel, A.; Ron, R.; Herrera, S.; Ron, R.; Perez-Molina, J. A.; Moreno, S.; Serrano-
Villar, S., Effects of Tocilizumab on Mortality in Hospitalized Patients with COVID-19: A Multicenter
Cohort Study. medRxiv 2020, 2020.06.08.20125245.
http://medrxiv.org/content/early/2020/06/09/2020.06.08.20125245.abstract
381. Matthay, M. A.; Aldrich, J. M.; Gotts, J. E., Treatment for severe acute respiratory distress syndrome
from COVID-19. The Lancet Respiratory Medicine 2020. https://doi.org/10.1016/S2213-2600(20)30127-2
382. McCulloch, D. J.; Kim, A. E.; Wilcox, N. C.; Logue, J. K.; Greninger, A. L.; Englund, J. A.; Chu, H. Y.,
Comparison of Unsupervised Home Self-collected Midnasal Swabs With Clinician-Collected
Nasopharyngeal Swabs for Detection of SARS-CoV-2 Infection. JAMA Network Open 2020, 3 (7),
e2016382-e2016382. https://doi.org/10.1001/jamanetworkopen.2020.16382
383. Medicago, Safety, Tolerability and Immunogenicinity of a Coronavirus-Like Particle COVID-19
Vaccine in Adults Aged 18-55 Years.
https://clinicaltrials.gov/ct2/show/NCT04450004?term=NCT04450004&draw=2&rank=1
.
384. Medicine, U. S. N. L. o., Evaluating the Safety, Tolerability and Immunogenicity of bacTRL-Spike
Vaccine for Prevention of COVID-19. https://clinicaltrials.gov/ct2/show/NCT04334980
.
385. Medicine, U. S. N. L. o., Evaluation of the Safety and Immunogenicity of a SARS-CoV-2 rS (COVID-19)
Nanoparticle Vaccine With/Without Matrix-M Adjuvant.
https://clinicaltrials.gov/ct2/show/NCT04368988?term=Novavax&draw=2&rank=23
.
386. Medicine, U. S. N. L. o., Immunity and Safety of Covid-19 Synthetic Minigene Vaccine.
ClinicalTrials.gov: 2020. https://clinicaltrials.gov/ct2/show/NCT04276896
387. Medicine, U. S. N. L. o., Phase Ib-II Trial of Dendritic Cell Vaccine to Prevent COVID-19 in Frontline
Healthcare Workers and First Responders.
https://clinicaltrials.gov/ct2/show/NCT04386252?term=Aivita+Biomedical&draw=2&rank=1
.
388. Medicine, U. S. N. L. o., Safety and Immunity of Covid-19 aAPC Vaccine. ClinicalTrials.gov: 2020.
https://clinicaltrials.gov/ct2/show/NCT04299724
389. Medicine, U. S. N. L. o., SCB-2019 as COVID-19 Vaccine.
https://clinicaltrials.gov/ct2/show/NCT04405908?term=SCB-2019&draw=2&rank=1
.
390. Medicine, U. S. N. L. o., Tableted COVID-19 Therapeutic Vaccine (COVID-19).
https://clinicaltrials.gov/ct2/show/NCT04380532?term=immunitor&draw=2&rank=11
.
391. Medigen, A Phase I, Prospective, Open-Labeled Study to Evaluate the Safety and Immunogenicity of
MVC-COV1901.
https://clinicaltrials.gov/ct2/show/study/NCT04487210?term=vaccine&cond=covid-
19&draw=7.
392. Melin, A. D.; Janiak, M. C.; Marrone, F.; Arora, P. S.; Higham, J. P., Comparative ACE2 variation and
primate COVID-19 risk. bioRxiv 2020, 2020.04.09.034967.
https://www.biorxiv.org/content/biorxiv/early/2020/04/19/2020.04.09.034967.full.pdf
393. Melo, G. C. d.; Araújo, K. C. G. M. d., COVID-19 infection in pregnant women, preterm delivery,
birth weight, and vertical transmission: a systematic review and meta-analysis. Cadernos de Saúde
blica 2020, 36.
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-
311X2020000702001&nrm=iso
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 53
394. Menachery, V. D.; Dinnon, K. H.; Yount, B. L.; McAnarney, E. T.; Gralinski, L. E.; Hale, A.; Graham, R.
L.; Scobey, T.; Anthony, S. J.; Wang, L.; Graham, B.; Randell, S. H.; Lipkin, W. I.; Baric, R. S., Trypsin
Treatment Unlocks Barrier for Zoonotic Bat Coronavirus Infection. Journal of Virology 2020, 94 (5),
e01774-19. https://jvi.asm.org/content/jvi/94/5/e01774-19.full.pdf
395. Mercuro, N. J.; Yen, C. F.; Shim, D. J.; Maher, T. R.; McCoy, C. M.; Zimetbaum, P. J.; Gold, H. S., Risk
of QT Interval Prolongation Associated With Use of Hydroxychloroquine With or Without Concomitant
Azithromycin Among Hospitalized Patients Testing Positive for Coronavirus Disease 2019 (COVID-19).
JAMA Cardiology 2020. https://doi.org/10.1001/jamacardio.2020.1834
396. Merkler, A. E.; Parikh, N. S.; Mir, S.; Gupta, A.; Kamel, H.; Lin, E.; Lantos, J.; Schenck, E. J.; Goyal, P.;
Bruce, S. S.; Kahan, J.; Lansdale, K. N.; LeMoss, N. M.; Murthy, S. B.; Stieg, P. E.; Fink, M. E.; Iadecola, C.;
Segal, A. Z.; Cusick, M.; Campion, T. R., Jr; Diaz, I.; Zhang, C.; Navi, B. B., Risk of Ischemic Stroke in
Patients With Coronavirus Disease 2019 (COVID-19) vs Patients With Influenza. JAMA Neurology 2020.
https://doi.org/10.1001/jamaneurol.2020.2730
397. Merow, C.; Urban, M. C., Seasonality and uncertainty in COVID-19 growth rates. medRxiv 2020,
2020.04.19.20071951.
https://www.medrxiv.org/content/medrxiv/early/2020/04/22/2020.04.19.20071951.full.pdf
398. Meyers, L. A., COVID-19 Mortality Projections for US States and Metropolitan Areas. https://covid-
19.tacc.utexas.edu/projections/.
399. Mikulska, M.; Nicolini, L. A.; Signori, A.; Di Biagio, A.; Sepulcri, C.; Russo, C.; Dettori, S.; Berruti, M.;
Sormani, M. P.; Giacobbe, D. R.; Vena, A.; De Maria, A.; Dentone, C.; Taramasso, L.; Mirabella, M.;
Magnasco, L.; Mora, S.; Delfino, E.; Toscanini, F.; Balletto, E.; Alessandrini, A. I.; Baldi, F.; Briano, F.;
Camera, M.; Dodi, F.; Ferrazin, A.; Labate, L.; Mazzarello, G.; Pincino, R.; Portunato, F.; Tutino, S.;
Barisione, E.; Bruzzone, B.; Orsi, A.; Schenone, E.; Rosseti, N.; Sasso, E.; Da Rin, G.; Pelosi, P.; Beltramini,
S.; Giacomini, M.; Icardi, G.; Gratarola, A.; Bassetti, M., Tocilizumab and steroid treatment in patients
with severe Covid-19 pneumonia. medRxiv 2020, 2020.06.22.20133413.
http://medrxiv.org/content/early/2020/06/26/2020.06.22.20133413.abstract
400. Millett, G. A.; Jones, A. T.; Benkeser, D.; Baral, S.; Mercer, L.; Beyrer, C.; Honermann, B.; Lankiewicz,
E.; Mena, L.; Crowley, J. S.; Sherwood, J.; Sullivan, P., Assessing Differential Impacts of COVID-19 on Black
Communities. Annals of Epidemiology 2020.
http://www.sciencedirect.com/science/article/pii/S1047279720301769
401. MIT, DELPHI Epidemiological Case Predictions. https://www.covidanalytics.io/projections.
402. Mitja, O.; Ubals, M.; Corbacho, M.; Alemany, A.; Suner, C.; Tebe, C.; Tobias, A.; Penafiel, J.; Ballana,
E.; Perez, C. A.; Admella, P.; Riera-Marti, N.; Laporte, P.; Mitja, J.; Clua, M.; Bertran, L.; Gavilan, S.; Ara, J.;
Sarquella, M.; Argimon, J. M.; Cuatrecasas, G.; Canadas, P.; Elizalde-Torrent, A.; Fabregat, R.; Farre, M.;
Forcada, A.; Flores-Mateo, G.; Lopez, C.; Muntada, E.; Nadal, N.; Narejos, S.; Gil-Ortega, A. N.; Prat, N.;
Puig, J.; Quinones, C.; Ramirez-Viaplana, F.; Reyes-Uruena, J.; Riveira-Munoz, E.; Ruiz, L.; Sanz, S.; Sentis,
A.; Sierra, A.; Velasco, C.; Vivanco-Hidalgo, R. M.; Zamora, J.; Casabona, J.; Vall-Mayans, M.; G-Beiras, C.;
Clotet, B., A Cluster-Randomized Trial of Hydroxychloroquine as Prevention of Covid-19 Transmission
and Disease. medRxiv 2020, 2020.07.20.20157651.
http://medrxiv.org/content/early/2020/07/26/2020.07.20.20157651.abstract
403. MITRE, COVID-19 Dashboard and Tools. https://dashboards.c19hcc.org/.
404. Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G., Estimating the asymptomatic proportion of
coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama,
Japan, 2020. Eurosurveillance 2020, 25 (10), 2000180.
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.10.2000180
405. Moderna, Moderna Announces Positive Interim Phase 1 Data for its mRNA Vaccine (mRNA-1273)
Against Novel Coronavirus. Moderna: 2020.
https://investors.modernatx.com/news-releases/news-
release-details/moderna-announces-positive-interim-phase-1-data-its-mrna-vaccine/
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 54
406. Moderna, A Study to Evaluate Efficacy, Safety, and Immunogenicity of mRNA-1273 Vaccine in
Adults Aged 18 Years and Older to Prevent COVID-19.
https://clinicaltrials.gov/ct2/show/NCT04470427?term=moderna&cond=covid&draw=2&rank=1
.
407. Montopoli, M.; Zumerle, S.; Vettor, R.; Rugge, M.; Zorzi, M.; Catapano, C. V.; Carbone, G.; Cavalli,
A.; Pagano, F.; Ragazzi, E., Androgen-deprivation therapies for prostate cancer and risk of infection by
SARS-CoV-2: a population-based study (n= 4532). Annals of Oncology 2020.
408. Morawska, L.; Milton, D. K., It is Time to Address Airborne Transmission of COVID-19. Clinical
Infectious Diseases 2020. https://doi.org/10.1093/cid/ciaa939
409. Moreno-rez, O.; Andres, M.; Leon-Ramirez, J. M.; Sánchez-Payá, J.; Rodríguez, J. C.; Sánchez, R.;
García-Sevila, R.; Boix, V.; Gil, J.; Merino, E., Experience with tocilizumab in severe COVID-19 pneumonia
after 80 days of follow-up: A retrospective cohort study. J Autoimmun 2020, 102523.
410. Moriarty, L. F.; Plucinski, M. M.; Marston, B. J. e. a., Public Health Responses fo COVID-19
Outbreaks on Cruise Ships - Worldwide, February - March 2020. MMWR 2020, (ePub: 23 March 2020).
https://www.cdc.gov/mmwr/volumes/69/wr/mm6912e3.htm
411. Morley, C. P.; Anderson, K. B.; Shaw, J.; Stewart, T.; Thomas, S. J.; Wang, D., Social Distancing
Metrics and Estimates of SARS-CoV-2 Transmission Rates: Associations Between Mobile Telephone Data
Tracking and R. Journal of Public Health Management and Practice 9000, Publish Ahead of Print.
https://journals.lww.com/jphmp/Fulltext/9000/Social_Distancing_Metrics_and_Estimates_of.99258.asp
x
412. Morrison, A. R.; Johnson, J. M.; Griebe, K. M.; Jones, M. C.; Stine, J. J.; Hencken, L. N.; To, L.;
Bianchini, M. L.; Vahia, A. T.; Swiderek, J.; Ramesh, M. S.; Peters, M. A.; Smith, Z. R., Clinical
characteristics and predictors of survival in adults with coronavirus disease 2019 receiving tocilizumab.
Journal of Autoimmunity 2020, 102512.
http://www.sciencedirect.com/science/article/pii/S0896841120301347
413. Moustafa, A. M.; Planet, P. J., Rapid whole genome sequence typing reveals multiple waves of
SARS-CoV-2 spread. bioRxiv 2020, 2020.06.08.139055.
https://www.biorxiv.org/content/biorxiv/early/2020/06/09/2020.06.08.139055.full.pdf
414. Mulligan, M. J.; Lyke, K. E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S. P.; Neuzil, K.; Raabe, V.;
Bailey, R.; Swanson, K. A.; Li, P.; Koury, K.; Kalina, W.; Cooper, D.; Fonter-Garfias, C.; Shi, P.-Y.; Tuereci,
O.; Tompkins, K. R.; Walsh, E. E.; Frenck, R.; Falsey, A. R.; Dormitzer, P. R.; Gruber, W. C.; Sahin, U.;
Jansen, K. U., Phase 1/2 Study to Describe the Safety and Immunogenicity of a COVID-19 RNA Vaccine
Candidate (BNT162b1) in Adults 18 to 55 Years of Age: Interim Report. medRxiv 2020,
2020.06.30.20142570.
https://www.medrxiv.org/content/medrxiv/early/2020/07/01/2020.06.30.20142570.full.pdf
415. Munster, V. J.; Feldmann, F.; Williamson, B. N.; van Doremalen, N.; Pérez-Pérez, L.; Schulz, J.;
Meade-White, K.; Okumura, A.; Callison, J.; Brumbaugh, B.; Avanzato, V. A.; Rosenke, R.; Hanley, P. W.;
Saturday, G.; Scott, D.; Fischer, E. R.; de Wit, E., Respiratory disease and virus shedding in rhesus
macaques inoculated with SARS-CoV-2. bioRxiv 2020, 2020.03.21.001628.
https://www.biorxiv.org/content/biorxiv/early/2020/03/21/2020.03.21.001628.full.pdf
416. Muoio, D., Scanwell Health, myLAB Box unveil more at-home COVID-19 testing services.
MobiHealthNews 20 March, 2020.
https://www.mobihealthnews.com/news/scanwell-health-mylab-
box-unveil-more-home-covid-19-testing-services
417. Nadi, A., An at-home fingerprick blood test may help detect your exposure to coronavirus. NBC
NEWS 04 April, 2020.
https://www.nbcnews.com/health/health-news/home-fingerprick-blood-test-
may-help-detect-your-exposure-coronavirus-n1176086
418. National Heart, L., and Blood Institute (NHLBI), NIH halts clinical trial of hydroxychloroquine. 2020.
https://www.nih.gov/news-events/news-releases/nih-halts-clinical-trial-hydroxychloroquine
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 55
419. Ngonghala, C. N.; Iboi, E.; Eikenberry, S.; Scotch, M.; MacIntyre, C. R.; Bonds, M. H.; Gumel, A. B.,
Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019
novel Coronavirus. Mathematical Biosciences 2020, 325, 108364.
http://www.sciencedirect.com/science/article/pii/S0025556420300560
420. Nguyen, L. H.; Drew, D. A.; Graham, M. S.; Joshi, A. D.; Guo, C.-G.; Ma, W.; Mehta, R. S.; Warner, E.
T.; Sikavi, D. R.; Lo, C.-H.; Kwon, S.; Song, M.; Mucci, L. A.; Stampfer, M. J.; Willett, W. C.; Eliassen, A. H.;
Hart, J. E.; Chavarro, J. E.; Rich-Edwards, J. W.; Davies, R.; Capdevila, J.; Lee, K. A.; Lochlainn, M. N.;
Varsavsky, T.; Sudre, C. H.; Cardoso, M. J.; Wolf, J.; Spector, T. D.; Ourselin, S.; Steves, C. J.; Chan, A. T.,
Risk of COVID-19 among front-line health-care workers and the general community: a prospective
cohort study. Lancet Public Health 2020. http://www.thelancet-press.com/embargo/hcwcovid.pdf
421. NIH, Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV).
https://www.nih.gov/research-training/medical-research-initiatives/activ
.
422. NIH, Fact Sheet for Patients And Parent/Caregivers - Emergency Use Authorization (EUA) Of
Remdesivir For Coronavirus Disease 2019 (COVID-19); National Institutes of Health: 2020.
https://www.fda.gov/media/137565/download
423. Nishiura, H.; Kobayashi, T.; Miyama, T.; Suzuki, A.; Jung, S.-m.; Hayashi, K.; Kinoshita, R.; Yang, Y.;
Yuan, B.; Akhmetzhanov, A. R.; Linton, N. M., Estimation of the asymptomatic ratio of novel coronavirus
infections (COVID-19). International Journal of Infectious Diseases 2020, 94, 154-155.
http://www.sciencedirect.com/science/article/pii/S1201971220301399
424. Northeastern, Modeling of COVID-19 epidemic in the United States.
https://covid19.gleamproject.org/#icubedproj
.
425. Now, C. A., America's COVID warning system. https://covidactnow.org/?s=38532.
426. NYT, Coronavirus in the U.S.: Latest Map and Case Count.
https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
.
427. O'Hare, R.; Wighton, K., Imperial to begin first human trials of new COVID-19 vaccine.
https://www.imperial.ac.uk/news/198314/imperial-begin-first-human-trials-covid-19/
.
428. Offeddu, V.; Yung, C. F.; Low, M. S. F.; Tam, C. C., Effectiveness of Masks and Respirators Against
Respiratory Infections in Healthcare Workers: A Systematic Review and Meta-Analysis. Clin Infect Dis
2017, 65 (11), 1934-1942. https://www.ncbi.nlm.nih.gov/pubmed/29140516
429. Okba, N.; Müller, M.; Li, W.; Wang, C.; GeurtsvanKessel, C.; Corman, V.; Lamers, M.; Sikkema, R.; de
Bruin, E.; Chandler, F., Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in
Coronavirus Disease 2019 Patients. Emerging infectious diseases 2020, 26 (7).
430. Olson, D. R.; Huynh, M.; Fine, A.; Baumgartner, J.; Castro, A.; Chan, H. T.; Daskalakis, D.; Devinney,
K.; Guerra, K.; Harper, S.; Kennedy, J.; Konty, K.; Li, W.; McGibbon, E.; Shaff, J.; Thompson, C.; Vora, N.
M.; Van Wye, G., Preliminary Estimate of Excess Mortality During the COVID-19 Outbreak New York
City, March 11May 2, 2020. Morbidity and Mortality Weekly Report 2020, (ePub: 11 May 2020).
https://www.cdc.gov/mmwr/volumes/69/wr/mm6919e5.htm?s_cid=mm6919e5_w
431. Onder, G.; Rezza, G.; Brusaferro, S., Case-Fatality Rate and Characteristics of Patients Dying in
Relation to COVID-19 in Italy. JAMA 2020. https://doi.org/10.1001/jama.2020.4683
432. Ong, S. W. X.; Tan, Y. K.; Chia, P. Y.; Lee, T. H.; Ng, O. T.; Wong, M. S. Y.; Marimuthu, K., Air, Surface
Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. Jama 2020.
https://jamanetwork.com/journals/jama/articlepdf/2762692/jama_ong_2020_ld_200016.pdf
433. Oran, D. P.; Topol, E. J., Prevalence of Asymptomatic SARS-CoV-2 Infection. Annals of Internal
Medicine 2020, 0 (0), null. https://www.acpjournals.org/doi/abs/10.7326/M20-3012
434. Ortega, J. T.; Serrano, M. L.; Pujol, F. H.; Rangel, H. R., Role of changes in SARS-CoV-2 spike protein
in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI journal 2020, 19, 410-417.
https://pubmed.ncbi.nlm.nih.gov/32210742
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 56
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081066/
435. Osterrieder, N.; Bertzbach, L. D.; Dietert, K.; Abdelgawad, A.; Vladimirova, D.; Kunec, D.; Hoffmann,
D.; Beer, M.; Gruber, A. D.; Trimpert, J., Age-Dependent Progression of SARS-CoV-2 Infection in Syrian
Hamsters. Viruses 2020, 12 (7).
436. Ou, J.; Zhou, Z.; Dai, R.; Zhang, J.; Lan, W.; Zhao, S.; Wu, J.; Seto, D.; Cui, L.; Zhang, G.; Zhang, Q.,
Emergence of RBD mutations in circulating SARS-CoV-2 strains enhancing the structural stability and
human ACE2 receptor affinity of the spike protein. bioRxiv 2020, 2020.03.15.991844.
https://www.biorxiv.org/content/biorxiv/early/2020/04/20/2020.03.15.991844.full.pdf
437. Oxford, Oxford COVID-19 vaccine to begin phase II/III human trials. University of Oxford: 2020.
http://www.ox.ac.uk/news/2020-05-22-oxford-covid-19-vaccine-begin-phase-iiiii-human-trials
438. Pan, A.; Liu, L.; Wang, C.; Guo, H.; Hao, X.; Wang, Q.; Huang, J.; He, N.; Yu, H.; Lin, X., Association of
Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China. JAMA
2020.
439. Pan, D.; Sze, S.; Minhas, J. S.; Bangash, M. N.; Pareek, N.; Divall, P.; Williams, C. M. L.; Oggioni, M.
R.; Squire, I. B.; Nellums, L. B.; Hanif, W.; Khunti, K.; Pareek, M., The impact of ethnicity on clinical
outcomes in COVID-19: A systematic review. EClinicalMedicine.
https://doi.org/10.1016/j.eclinm.2020.100404
440. Pan, F.; Ye, T.; Sun, P.; Gui, S.; Liang, B.; Li, L.; Zheng, D.; Wang, J.; Hesketh, R. L.; Yang, L.; Zheng, C.,
Time Course of Lung Changes On Chest CT During Recovery From 2019 Novel Coronavirus (COVID-19)
Pneumonia. Radiology 0 (0), 200370. https://pubs.rsna.org/doi/abs/10.1148/radiol.2020200370
441. Pang, J.; Xu, F.; Aondio, G.; Li, Y.; Fumagalli, A.; Lu, M.; Valmadre, G.; Wei, J.; Bian, Y.; Canesi, M.;
Damiani, G.; Zhang, Y.; Yu, D.; Chen, J.; Ji, X.; Sui, W.; Wang, B.; Wu, S.; Kovacs, A.; Revera, M.; Wang, H.;
Zhang, Y.; Chen, Y.; Cao, Y., Efficacy and tolerability of bevacizumab in patients with severe Covid -19.
medRxiv 2020, 2020.07.26.20159756.
http://medrxiv.org/content/early/2020/07/29/2020.07.26.20159756.abstract
442. Paranjpe, I.; Fuster, V.; Lala, A.; Russak, A.; Glicksberg, B. S.; Levin, M. A.; Charney, A. W.; Narula, J.;
Fayad, Z. A.; Bagiella, E.; Zhao, S.; Nadkarni, G. N., Association of Treatment Dose Anticoagulation with
In-Hospital Survival Among Hospitalized Patients with COVID-19. Journal of the American College of
Cardiology 2020, 27327.
http://www.onlinejacc.org/content/accj/early/2020/05/05/j.jacc.2020.05.001.full.pdf
443. Paranjpe, I.; Russak, A.; De Freitas, J. K.; Lala, A.; Miotto, R.; Vaid, A.; Johnson, K. W.; Danieletto, M.;
Golden, E.; Meyer, D.; Singh, M.; Somani, S.; Manna, S.; Nangia, U.; Kapoor, A.; O'Hagan, R.; O'Reilly, P.
F.; Huckins, L. M.; Glowe, P.; Kia, A.; Timsina, P.; Freeman, R. M.; Levin, M. A.; Jhang, J.; Firpo, A.;
Kovatch, P.; Finkelstein, J.; Aberg, J. A.; Bagiella, E.; Horowitz, C. R.; Murphy, B.; Fayad, Z. A.; Narula, J.;
Nestler, E. J.; Fuster, V.; Cordon-Cardo, C.; Charney, D. S.; Reich, D. L.; Just, A. C.; Bottinger, E. P.;
Charney, A. W.; Glicksberg, B. S.; Nadkarni, G., Clinical Characteristics of Hospitalized Covid-19 Patients
in New York City. medRxiv 2020, 2020.04.19.20062117.
https://www.medrxiv.org/content/medrxiv/early/2020/04/26/2020.04.19.20062117.full.pdf
444. Park, A., An At-Home Coronavirus Test May Be on the Way in the U.S. TIME 25 March, 2020.
https://time.com/5809753/at-home-coronavirus-test/
445. Park, S. W.; Champredon, D.; Earn, D. J. D.; Li, M.; Weitz, J. S.; Grenfell, B. T.; Dushoff, J., Reconciling
early-outbreak preliminary estimates of the basic reproductive number and its uncertainty: a new
framework and applications to the novel coronavirus (2019-nCoV) outbreak. 2020, 1-13.
446. Park, S. Y.; Kim, Y.-M.; Yi, S.; Lee, S.; Na, B.-J.; Kim, C. B.; Kim, J.-i.; Kim, H. S.; Kim, Y. B.; Park, Y.;
Huh, I. S.; Kim, H. K.; Yoon, H. J.; Jang, H.; Kim, K.; Chang, Y.; Kim, I.; Lee, H.; Gwack, J.; Kim, S. S.; Kim, M.;
Kweon, S.; Choe, Y. J.; Park, O.; Park, Y. J.; Jeong, E. K., Coronavirus Disease Outbreak in Call Center,
South Korea. Emerging Infectious Disease journal 2020, 26 (8), 1666.
https://wwwnc.cdc.gov/eid/article/26/8/20-1274_article
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 57
447. Park, Y. J.; Choe, Y. J.; Park, O.; Park, S. Y.; Kim, Y.-M.; Kim, J.; Kweon, S.; Woo, Y.; Gwack, J.; Kim, S.
S.; Lee, J.; Hyun, J.; Ryu, B.; Jang, Y. S.; Kim, H.; Shin, S. H.; Yi, S.; Lee, S.; Kim, H. K.; Lee, H.; Jin, Y.; Park,
E.; Choi, S. W.; Kim, M.; Song, J.; Choi, S. W.; Kim, D.; Jeon, B.-H.; Yoo, H.; Jeong, E. K., Contact Tracing
during Coronavirus Disease Outbreak, South Korea, 2020. Emerging Infectious Disease journal 2020, 26
(10). https://wwwnc.cdc.gov/eid/article/26/10/20-1315_article
448. Parri, N.; Lenge, M.; Buonsenso, D., Children with Covid-19 in Pediatric Emergency Departments in
Italy. New England Journal of Medicine 2020. https://www.nejm.org/doi/full/10.1056/NEJMc2007617
449. Pastorino, B.; Touret, F.; Gilles, M.; de Lamballerie, X.; Charrel, R., Prolonged viability of SARS-CoV-2
in fomites. 2020.
450. Patel, A.; Shah, K.; Dharsandiya, M.; Patel, K.; Patel, T.; Patel, M.; Reljic, T.; Kumar, A., Safety and
efficacy of tocilizumab in the treatment of severe acute respiratory syndrome coronavirus-2 pneumonia:
A retrospective cohort study. Indian J Med Microbiol 2020, 38 (1), 117-123.
451. Paterson, R. W.; Brown, R. L.; Benjamin, L.; Nortley, R.; Wiethoff, S.; Bharucha, T.; Jayaseelan, D. L.;
Kumar, G.; Raftopoulos, R. E.; Zambreanu, L.; Vivekanandam, V.; Khoo, A.; Geraldes, R.; Chinthapalli, K.;
Boyd, E.; Tuzlali, H.; Price, G.; Christofi, G.; Morrow, J.; McNamara, P.; McLoughlin, B.; Lim, S. T.; Mehta,
P. R.; Levee, V.; Keddie, S.; Yong, W.; Trip, S. A.; Foulkes, A. J. M.; Hotton, G.; Miller, T. D.; Everitt, A. D.;
Carswell, C.; Davies, N. W. S.; Yoong, M.; Attwell, D.; Sreedharan, J.; Silber, E.; Schott, J. M.;
Chandratheva, A.; Perry, R. J.; Simister, R.; Checkley, A.; Longley, N.; Farmer, S. F.; Carletti, F.; Houlihan,
C.; Thom, M.; Lunn, M. P.; Spillane, J.; Howard, R.; Vincent, A.; Werring, D. J.; Hoskote, C.; Jäger, H. R.;
Manji, H.; Zandi, M. S.; Neurology, t. U. Q. S. N. H. f.; Group, N. C.-S., The emerging spectrum of COVID-
19 neurology: clinical, radiological and laboratory findings. Brain 2020.
https://doi.org/10.1093/brain/awaa240
452. Patolia, H.; Pan, J.; Harb, C.; Marr, L. C.; Baffoe-Bonnie, A., Filtration evaluation and clinical use of
expired elastomeric P-100 filter cartridges during the COVID-19 pandemic. Infection Control & Hospital
Epidemiology 2020, 1-6.
https://www.cambridge.org/core/article/filtration-evaluation-and-clinical-use-
of-expired-elastomeric-p100-filter-cartridges-during-the-covid19-
pandemic/D5EFCC5EEF65FEA210E1070149CB9DEF
453. Payne, D. C., SARS-CoV-2 Infections and Serologic Responses from a Sample of US Navy Service
MembersUSS Theodore Roosevelt, April 2020. MMWR. Morbidity and Mortality Weekly Report 2020,
69.
454. Peltier, R. E.; Wang, J.; Hollenbeck, B. L.; Lanza, J.; Furtado, R. M.; Cyr, J.; Ellison, R.; Kobayashi, K. J.,
Addressing Decontaminated Respirators: Some Methods Appear to Damage Mask Integrity and
Protective Function. Infection Control & Hospital Epidemiology 2020, 1-9.
455. Perchetti, G. A.; Huang, M.-L.; Peddu, V.; Jerome, K. R.; Greninger, A. L., Stability of SARS-CoV-2 in
PBS for Molecular Detection. Journal of Clinical Microbiology 2020.
456. Pereda, R.; Gonzalez, D.; Rivero, H.; Rivero, J.; Perez, A.; Lopez, L. d. R.; Mezquia, N.; Venegas, R.;
Betancourt, J.; Dominguez, R., Therapeutic effectiveness of interferon-alpha2b against COVID-19: the
Cuban experience. medRxiv 2020, 2020.05.29.20109199.
http://medrxiv.org/content/early/2020/06/09/2020.05.29.20109199.abstract
457. Perkins, A.; Espana, G., NotreDame-FRED COVID-19 forecasts.
https://github.com/confunguido/covid19_ND_forecasting/blob/master/README.md
.
458. Perrone, F.; Piccirillo, M. C.; Ascierto, P. A.; Salvarani, C.; Parrella, R.; Marata, A. M.; Popoli, P.;
Ferraris, L.; Marrocco Trischitta, M. M.; Ripamonti, D.; Binda, F.; Bonfanti, P.; Squillace, N.; Castelli, F.;
Muiesan, M. L.; Lichtner, M.; Calzetti, C.; Salerno, N. D.; Atripaldi, L.; Cascella, M.; costantini, m.; Dolci,
G.; Facciolongo, N. C.; Fraganza, F.; Massari, M.; Montesarchio, V.; Mussini, C.; Negri, E. A.; Botti, G.;
Cardone, C.; Gargiulo, P.; Gravina, A.; Schettino, C.; Arenare, L.; Chiodini, P.; Gallo, C., Tocilizumab for
patients with COVID-19 pneumonia. The TOCIVID-19 phase 2 trial. medRxiv 2020, 2020.06.01.20119149.
http://medrxiv.org/content/early/2020/06/05/2020.06.01.20119149.abstract
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 58
459. Petrakis, D.; Margi, D.; Tsarouhas, K.; Tekos, F.; Stan, M.; Nikitovic, D.; Kouretas, D.; Spandidos, D.
A.; Tsatsakis, A., Obesity a risk factor for increased COVID19 prevalence, severity and lethality
(Review). Mol Med Rep 2020, 22 (1), 9-19. https://doi.org/10.3892/mmr.2020.11127
460. Pfizer, BIONTECH AND PFIZER ANNOUNCE REGULATORY APPROVAL FROM GERMAN AUTHORITY
PAUL-EHRLICH-INSTITUT TO COMMENCE FIRST CLINICAL TRIAL OF COVID-19 VACCINE CANDIDATES.
2020.
https://www.pfizer.com/news/press-release/press-release-
detail/biontech_and_pfizer_announce_regulatory_approval_from_german_authority_paul_ehrlich_insti
tut_to_commence_first_clinical_trial_of_covid_19_vaccine_candidates
461. Pigoga, J. L.; Friedman, A.; Broccoli, M.; Hirner, S.; Naidoo, A. V.; Singh, S.; Werner, K.; Wallis, L. A.,
Clinical and historical features associated with severe COVID-19 infection: a systematic review. medRxiv
2020, 2020.04.23.20076653.
https://www.medrxiv.org/content/medrxiv/early/2020/04/27/2020.04.23.20076653.full.pdf
462. plc, S., Synairgen announces positive results from trial of SNG001 in hospitalised COVID-19 patients.
2020.
https://www.synairgen.com/wp-content/uploads/2020/07/200720-Synairgen-announces-
positive-results-from-trial-of-SNG001-in-hospitalised-COVID-19-patients.pdf
463. Pollán, M.; Pérez-Gómez, B.; Pastor-Barriuso, R.; al., e., Prevalence of SARS-CoV-2 in Spain (ENE-
COVID): a nationwide, population-based seroepidemiological study. The Lancet 2020.
https://doi.org/10.1016/S0140-6736(20)31483-5
464. Price-Haywood, E. G.; Burton, J.; Fort, D.; Seoane, L., Hospitalization and Mortality among Black
Patients and White Patients with Covid-19. New England Journal of Medicine 2020.
https://www.nejm.org/doi/full/10.1056/NEJMsa2011686
465. Products, B. I. o. B., A phase I/II clinical trial for inactivated novel coronavirus (2019-CoV) vaccine
(Vero cells) http://www.chictr.org.cn/showproj.aspx?proj=53003
.
466. Qiu, H.; Wu, J.; Hong, L.; Luo, Y.; Song, Q.; Chen, D., Clinical and epidemiological features of 36
children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study.
The Lancet Infectious Diseases. https://doi.org/10.1016/S1473-3099(20)30198-5
467. Queensland, U. o., An interventional study to evaluate the safety and immune response of a
vaccine against Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2, the virus that causes
COVID-19 infection) when given to healthy adult participants. .
https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=379861&isReview=true
.
468. Rabenau, H.; Kampf, G.; Cinatl, J.; Doerr, H., Efficacy of various disinfectants against SARS
coronavirus. Journal of Hospital Infection 2005, 61 (2), 107-111.
https://www.sciencedirect.com/science/article/pii/S0195670105000447
469. Rabenau, H. F.; Cinatl, J.; Morgenstern, B.; Bauer, G.; Preiser, W.; Doerr, H. W., Stability and
inactivation of SARS coronavirus. Med Microbiol Immunol 2005, 194 (1-2), 1-6.
https://link.springer.com/content/pdf/10.1007/s00430-004-0219-0.pdf
470. Rajter, J. C.; Sherman, M.; Fatteh, N.; Vogel, F.; Sacks, J.; Rajter, J.-J., ICON (Ivermectin in COvid
Nineteen) study: Use of Ivermectin is Associated with Lower Mortality in Hospitalized Patients with
COVID19. medRxiv 2020, 2020.06.06.20124461.
http://medrxiv.org/content/early/2020/06/10/2020.06.06.20124461.abstract
471. Rambaut, A., Phylodynamic analysis of nCoV-2019 genomes - 27-Jan-2020.
http://virological.org/t/phylodynamic-analysis-of-ncov-2019-genomes-27-jan-2020/353
.
472. Ramiro, S.; Mostard, R. L. M.; Magro-Checa, C.; van Dongen, C. M. P.; Dormans, T.; Buijs, J.;
Gronenschild, M.; de Kruif, M. D.; van Haren, E. H. J.; van Kraaij, T.; Leers, M. P. G.; Peeters, R.; Wong, D.
R.; Landewé, R. B. M., Historically controlled comparison of glucocorticoids with or without tocilizumab
versus supportive care only in patients with COVID-19-associated cytokine storm syndrome: results of
the CHIC study. Ann Rheum Dis 2020.
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 59
473. Rapid Expert Consultation, Rapid Expert Consultation Update on SARS-CoV-2 Surface Stability and
Incubation for the COVID-19 Pandemic (March 27, 2020). The National Academies Press: Washington,
DC, 2020. https://www.nap.edu/read/25763/chapter/1
474. Rapkiewicz, A. V.; Mai, X.; Carsons, S. E.; Pittaluga, S.; Kleiner, D. E.; Berger, J. S.; Thomas, S.; Adler,
N. M.; Charytan, D. M.; Gasmi, B.; Hochman, J. S.; Reynolds, H. R., Megakaryocytes and platelet-fibrin
thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series. EClinicalMedicine
2020, 100434. http://www.sciencedirect.com/science/article/pii/S2589537020301784
475. Ratnesar-Shumate, S.; Williams, G.; Green, B.; Krause, M.; Holland, B.; Wood, S.; Bohannon, J.;
Boydston, J.; Freeburger, D.; Hooper, I.; Beck, K.; Yeager, J.; Altamura, L. A.; Biryukov, J.; Yolitz, J.; Schuit,
M.; Wahl, V.; Hevey, M.; Dabisch, P., Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces. The
Journal of Infectious Diseases 2020. https://doi.org/10.1093/infdis/jiaa274
476. Regeneron, Regeneron and Sanofi Provide Update on Kevzara® (sarilumab) Phase 3 U.S. Trial in
COVID-19 Patients. 2020.
https://www.prnewswire.com/news-releases/regeneron-and-sanofi-provide-
update-on-kevzara-sarilumab-phase-3-us-trial-in-covid-19-patients-301087849.html
477. Reich, N., Ensemble. https://reichlab.io/.
478. Remuzzi, A.; Remuzzi, G., COVID-19 and Italy: what next? The Lancet 2020.
https://doi.org/10.1016/S0140-6736(20)30627-9
479. Ren, X.; Liu, Y.; Chen, H.; Liu, W.; Guo, Z.; Chen, C.; Zhou, J.; Xiao, Q.; Jiang, G.-M.; Shan, H.,
Application and Optimization of RT-PCR in Diagnosis of SARS-CoV-2 Infection. medRxiv 2020.
480. Rengasamy, S.; Eimer, B.; Shaffer, R. E., Simple respiratory protection--evaluation of the filtration
performance of cloth masks and common fabric materials against 20-1000 nm size particles. Ann Occup
Hyg 2010, 54 (7), 789-98. https://www.ncbi.nlm.nih.gov/pubmed/20584862
481. Richard, M.; Kok, A.; de Meulder, D.; Bestebroer, T. M.; Lamers, M. M.; Okba, N. M. A.; Fentener
van Vlissingen, M.; Rockx, B.; Haagmans, B. L.; Koopmans, M. P. G.; Fouchier, R. A. M.; Herfst, S., SARS-
CoV-2 is transmitted via contact and via the air between ferrets. Nature Communications 2020, 11 (1),
3496. https://doi.org/10.1038/s41467-020-17367-2
482. Richard, M.; Kok, A.; de Meulder, D.; Bestebroer, T. M.; Lamers, M. M.; Okba, N. M. A.; Fentener
van Vlissingen, M.; Rockx, B.; Haagmans, B. L.; Koopmans, M. P. G.; Fouchier, R. A. M.; Herfst, S., SARS-
CoV-2 is transmitted via contact and via the air between ferrets. bioRxiv 2020, 2020.04.16.044503.
https://www.biorxiv.org/content/biorxiv/early/2020/04/17/2020.04.16.044503.full.pdf
483. Richardson, S.; Hirsch, J. S.; Narasimhan, M.; Crawford, J. M.; McGinn, T.; Davidson, K. W.;
Consortium, a. t. N. C.-R., Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients
Hospitalized With COVID-19 in the New York City Area. JAMA 2020.
https://doi.org/10.1001/jama.2020.6775
484. Richter, W.; Hofacre, K.; Willenberg, Z., Final Report for the Bioquell Hydrogen Peroxide Vapor (HPV)
Decontamination for Reuse of N95 Respirators; Battelle Memorial Institute: 2016.
http://wayback.archive-
it.org/7993/20170113034232/http://www.fda.gov/downloads/EmergencyPreparedness/Counterterrori
sm/MedicalCountermeasures/MCMRegulatoryScience/UCM516998.pdf
485. Rickman, H. M.; Rampling, T.; Shaw, K.; Martinez-Garcia, G.; Hail, L.; Coen, P.; Shahmanesh, M.;
Shin, G. Y.; Nastouli, E.; Houlihan, C. F., Nosocomial transmission of COVID-19: a retrospective study of
66 hospital-acquired cases in a London teaching hospital. Clinical Infectious Diseases 2020.
https://doi.org/10.1093/cid/ciaa816
486. Riou, J.; Althaus, C. L., Pattern of early human-to-human transmission of Wuhan 2019 novel
coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance 2020, 25 (4), 2000058.
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.4.2000058
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 60
487. Riphagen, S.; Gomez, X.; Gonzalez-Martinez, C.; Wilkinson, N.; Theocharis, P., Hyperinflammatory
shock in children during COVID-19 pandemic. The Lancet.
https://doi.org/10.1016/S0140-
6736(20)31094-1
488. Rivera, D. R.; Peters, S.; Panagiotou, O. A.; Shah, D. P.; Kuderer, N. M.; Hsu, C.-Y.; Rubinstein, S. M.;
Lee, B. J.; Choueiri, T. K.; de Lima Lopes, G.; Grivas, P.; Painter, C. A.; Rini, B. I.; Thompson, M. A.;
Arcobello, J.; Bakouny, Z.; Doroshow, D. B.; Egan, P. C.; Farmakiotis, D.; Fecher, L. A.; Friese, C. R.; Galsky,
M. D.; Goel, S.; Gupta, S.; Halfdanarson, T. R.; Halmos, B.; Hawley, J. E.; Khaki, A. R.; Lemmon, C. A.;
Mishra, S.; Olszewski, A. J.; Pennell, N. A.; Puc, M. M.; Revankar, S. G.; Schapira, L.; Schmidt, A.;
Schwartz, G. K.; Shah, S. A.; Wu, J. T.; Xie, Z.; Yeh, A. C.; Zhu, H.; Shyr, Y.; Lyman, G. H.; Warner, J. L.,
Utilization of COVID-19 treatments and clinical outcomes among patients with cancer: A COVID-19 and
Cancer Consortium (CCC19) cohort study. Cancer Discovery 2020, CD-20-0941.
http://cancerdiscovery.aacrjournals.org/content/early/2020/07/21/2159-8290.CD-20-0941.abstract
489. Robertson, D., nCoV’s relationship to bat coronaviruses & recombination signals (no snakes) 2020.
http://virological.org/t/ncovs-relationship-to-bat-coronaviruses-recombination-signals-no-snakes/331
490. Rockx, B.; Kuiken, T.; Herfst, S.; Bestebroer, T.; Lamers, M. M.; Oude Munnink, B. B.; de Meulder,
D.; van Amerongen, G.; van den Brand, J.; Okba, N. M. A.; Schipper, D.; van Run, P.; Leijten, L.; Sikkema,
R.; Verschoor, E.; Verstrepen, B.; Bogers, W.; Langermans, J.; Drosten, C.; Fentener van Vlissingen, M.;
Fouchier, R.; de Swart, R.; Koopmans, M.; Haagmans, B. L., Comparative pathogenesis of COVID-19,
MERS, and SARS in a nonhuman primate model. Science 2020, eabb7314.
https://science.sciencemag.org/content/sci/early/2020/04/16/science.abb7314.full.pdf
491. Rokkas, T., Gastrointestinal involvement in COVID-19: a systematic review and meta-analysis.
Annals of Gastroenterology 2020, 33 (4), 355-365.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315709/
492. Rosenberg, E. S.; Dufort, E. M.; Blog, D. S.; Hall, E. W.; Hoefer, D.; Backenson, B. P.; Muse, A. T.;
Kirkwood, J. N.; George, K. S.; Holtgrave, D. R.; Hutton, B. J.; Zucker, H. A.; Team, N. Y. S. C. R., COVID-19
Testing, Epidemic Features, Hospital Outcomes, and Household Prevalence, New York StateMarch
2020. Clinical Infectious Diseases 2020. https://doi.org/10.1093/cid/ciaa549
493. Rossi, B.; Nguyen, L. S.; Zimmermann, P.; Boucenna, F.; Baucher, L.; Dubret, L.; Guillot, H.;
Bouldouyre, M.-a.; Allenbach, Y.; Salem, J.-E.; Barsoum, P.; Oufella, A.; Gros, H., Effect of tocilizumab in
hospitalized patients with severe pneumonia COVID-19: a cohort study. medRxiv 2020,
2020.06.06.20122341. http://medrxiv.org/content/early/2020/06/09/2020.06.06.20122341.abstract
494. Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.;
Janke, C.; Guggemos, W.; Seilmaier, M.; Drosten, C.; Vollmar, P.; Zwirglmaier, K.; Zange, S.; Wölfel, R.;
Hoelscher, M., Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. New
England Journal of Medicine 2020. https://www.nejm.org/doi/full/10.1056/NEJMc2001468
https://www.nejm.org/doi/10.1056/NEJMc2001468
495. Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J., Clinical predictors of mortality due to COVID-19
based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine 2020.
https://doi.org/10.1007/s00134-020-05991-x
496. Rubino, F.; Amiel, S. A.; Zimmet, P.; Alberti, G.; Bornstein, S.; Eckel, R. H.; Mingrone, G.; Boehm, B.;
Cooper, M. E.; Chai, Z.; Del Prato, S.; Ji, L.; Hopkins, D.; Herman, W. H.; Khunti, K.; Mbanya, J.-C.; Renard,
E., New-Onset Diabetes in Covid-19. New England Journal of Medicine 2020.
https://www.nejm.org/doi/full/10.1056/NEJMc2018688
497. Ruiz-Irastorza, G.; Pijoan, J.-I.; Bereciartua, E.; Dunder, S.; Dominguez, J.; Garcia-Escudero, P.;
Rodrigo, A.; Gomez-Carballo, C.; Varona, J.; Guio, L.; Ibarrola, M.; Ugarte, A.; Martinez-Berriotxoa, A.,
SECOND WEEK METHYL-PREDNISOLONE PULSES IMPROVE PROGNOSIS IN PATIENTS WITH SEVERE
CORONAVIRUS DISEASE 2019 PNEUMONIA: AN OBSERVATIONAL COMPARATIVE STUDY USING ROUTINE
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 61
CARE DATA. medRxiv 2020, 2020.07.16.20152868.
http://medrxiv.org/content/early/2020/07/23/2020.07.16.20152868.abstract
498. Ruktanonchai, N. W.; Floyd, J. R.; Lai, S.; Ruktanonchai, C. W.; Sadilek, A.; Rente-Lourenco, P.; Ben,
X.; Carioli, A.; Gwinn, J.; Steele, J. E.; Prosper, O.; Schneider, A.; Oplinger, A.; Eastham, P.; Tatem, A. J.,
Assessing the impact of coordinated COVID-19 exit strategies across Europe. Science 2020, eabc5096.
https://science.sciencemag.org/content/sci/early/2020/07/16/science.abc5096.full.pdf
499. Rundle, A., Severe COVID-19 Risk Mapping.
https://columbia.maps.arcgis.com/apps/webappviewer/index.html?id=ade6ba85450c4325a12a5b9c09
ba796c.
500. Russell, T. W.; Hellewell, J.; Abbott, S.; Golding, N.; Gibbs, H.; Jarvis, C. I.; van Zandvoort, K.; group,
C. n. w.; Flasche, S.; Eggo, R. M.; Edmunds, W. J.; Kucharski, A. J., Using a delay-adjusted case fatality
ratio to estimate under-reporting. CMMID: 2020.
https://cmmid.github.io/topics/covid19/severity/global_cfr_estimates.html
501. Ryan, K. A.; Bewley, K. R.; Fotheringham, S. A.; Brown, P.; Hall, Y.; Marriott, A. C.; Tree, J. A.; Allen,
L.; Aram, M. J.; Brunt, E.; Buttigieg, K. R.; Cavell, B. E.; Carter, D. P.; Cobb, R.; Coombes, N. S.; Godwin, K.
J.; Gooch, K. E.; Gouriet, J.; Halkerston, R.; Harris, D. J.; Humphries, H. E.; Hunter, L.; Ho, C. M. K.;
Kennard, C. L.; Leung, S.; Ngabo, D.; Osman, K. L.; Paterson, J.; Penn, E. J.; Pullan, S. T.; Rayner, E.; Slack,
G. S.; Steeds, K.; Taylor, I.; Tipton, T.; Thomas, S.; Wand, N. I.; Watson, R. J.; Wiblin, N. R.; Charlton, S.;
Hallis, B.; Hiscox, J. A.; Funnell, S.; Dennis, M. J.; Whittaker, C. J.; Catton, M. G.; Druce, J.; Salguero, F. J.;
Carroll, M. W., Dose-dependent response to infection with SARS-CoV-2 in the ferret model: evidence of
protection to re-challenge. bioRxiv 2020, 2020.05.29.123810.
https://www.biorxiv.org/content/biorxiv/early/2020/05/29/2020.05.29.123810.full.pdf
502. Saknimit, M.; Inatsuki, I.; Sugiyama, Y.; Yagami, K., Virucidal efficacy of physico-chemical treatments
against coronaviruses and parvoviruses of laboratory animals. Jikken Dobutsu 1988, 37 (3), 341-5.
https://www.jstage.jst.go.jp/article/expanim1978/37/3/37_3_341/_pdf
503. Salazar, E.; Perez, K. K.; Ashraf, M.; Chen, J.; Castillo, B.; Christensen, P. A.; Eubank, T.; Bernard, D.
W.; Eagar, T. N.; Long, S. W.; Subedi, S.; Olsen, R. J.; Leveque, C.; Schwartz, M. R.; Dey, M.; Chavez-East,
C.; Rogers, J.; Shehabeldin, A.; Joseph, D.; Williams, G.; Thomas, K.; Masud, F.; Talley, C.; Dlouhy, K. G.;
Lopez, B. V.; Hampton, C.; Lavinder, J.; Gollihar, J. D.; Maranhao, A. C.; Ippolito, G. C.; Saavedra, M. O.;
Cantu, C. C.; Yerramilli, P.; Pruitt, L.; Musser, J. M., Treatment of COVID-19 Patients with Convalescent
Plasma. Am J Pathol 2020.
504. Saloner, B.; Parish, K.; Ward, J. A.; DiLaura, G.; Dolovich, S., COVID-19 Cases and Deaths in Federal
and State Prisons. Jama 2020.
505. Salton, F.; Confalonieri, P.; Santus, P.; Harari, S.; Scala, R.; Lanini, S.; Vertui, V.; Oggionni, T.;
Caminati, A.; Patruno, V.; Tamburrini, M.; Scartabellati, A.; Parati, M.; Villani, M.; Radovanovic, D.;
Tomassetti, S.; Ravaglia, C.; Poletti, V.; Vianello, A.; Gaccione, A. T.; Guidelli, L.; Raccanelli, R.; Lacedonia,
D.; Lucernoni, P.; Foschino Barbaro, M. P.; Centanni, S.; Mondoni, M.; Davi, M.; Fantin, A.; Cao, X.;
Torelli, L.; Zucchetto, A.; Montico, M.; Casarin, A.; Romagnoli, M.; Gasparini, S.; Bonifazi, M.; Agaro, P.;
Marcello, A.; Licastro, D.; Ruaro, B.; Volpe, M. C.; Umberger, R.; Meduri, G. U.; Confalonieri, M.,
Prolonged low-dose methylprednisolone in patients with severe COVID-19 pneumonia. medRxiv 2020,
2020.06.17.20134031. http://medrxiv.org/content/early/2020/06/20/2020.06.17.20134031.abstract
506. Sanche, S.; Lin, Y. T.; Xu, C.; Romero-Severson, E.; Hengartner, N. W.; Ke, R., The novel coronavirus,
2019-nCoV, is highly contagious and more infectious than initially estimated. arXiv preprint
arXiv:2002.03268 2020.
507. Sanchez, G. V.; Biedron, C.; Fink, L. R.; al., e., Initial and Repeated Point Prevalence Surveys to
Inform SARS-CoV-2 Infection Prevention in 26 Skilled Nursing Facilities Detroit, Michigan, MarchMay
2020. Morbidity and Mortality Weekly Report 2020, ePub: 1 July 2020.
https://www.cdc.gov/mmwr/volumes/69/wr/mm6927e1.htm?s_cid=mm6927e1_w#suggestedcitation
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 62
508. Santarpia, J. L.; Herrera, V. L.; Rivera, D. N.; Ratnesar-Shumate, S.; Reid, S. P.; Denton, P. W.;
Martens, J. W. S.; Fang, Y.; Conoan, N.; Callahan, M. V.; Lawler, J. V.; Brett-Major, D. M.; Lowe, J. J., The
Infectious Nature of Patient-Generated SARS-CoV-2 Aerosol. medRxiv 2020, 2020.07.13.20041632.
https://www.medrxiv.org/content/medrxiv/early/2020/07/21/2020.07.13.20041632.full.pdf
509. Santarpia, J. L.; Rivera, D. N.; Herrera, V.; Morwitzer, M. J.; Creager, H.; Santarpia, G. W.; Crown, K.
K.; Brett-Major, D.; Schnaubelt, E.; Broadhurst, M. J.; Lawler, J. V.; Reid, S. P.; Lowe, J. J., Transmission
Potential of SARS-CoV-2 in Viral Shedding Observed at the University of Nebraska Medical Center.
medRxiv 2020, 2020.03.23.20039446.
https://www.medrxiv.org/content/medrxiv/early/2020/03/26/2020.03.23.20039446.1.full.pdf
510. Sanz Herrero, F.; Puchades Gimeno, F.; Ortega García, P.; Ferrer Gómez, C.; Ocete Mochón, M. D.;
García Deltoro, M., Methylprednisolone added to tocilizumab reduces mortality in SARS-CoV-2
pneumonia: An observational study. Journal of Internal Medicine 2020, n/a (n/a).
https://doi.org/10.1111/joim.13145
511. Satlin, M. J.; Goyal, P.; Magleby, R.; Maldarelli, G. A.; Pham, K.; Kondo, M.; Schenck, E. J.; Rennert,
H.; Westblade, L. F.; Choi, J. J.; Safford, M. M.; Gulick, R. M., Safety, tolerability, and clinical outcomes of
hydroxychloroquine for hospitalized patients with coronavirus 2019 disease. PLOS ONE 2020, 15 (7),
e0236778. https://doi.org/10.1371/journal.pone.0236778
512. Sauter, J. L.; Baine, M. K.; Butnor, K. J.; Buonocore, D. J.; Chang, J. C.; Jungbluth, A. A.; Szabolcs, M.
J.; Morjaria, S.; Mount, S. L.; Rekhtman, N.; Selbs, E.; Sheng, Z.-M.; Xiao, Y.; Kleiner, D. E.; Pittaluga, S.;
Taubenberger, J. K.; Rapkiewicz, A. V.; Travis, W. D., Insights into pathogenesis of fatal COVID-19
pneumonia from histopathology with immunohistochemical and viral RNA studies. Histopathology n/a
(n/a). https://onlinelibrary.wiley.com/doi/abs/10.1111/his.14201
513. Scarsi, M.; Piantoni, S.; Colombo, E.; Airó, P.; Richini, D.; Miclini, M.; Bertasi, V.; Bianchi, M.;
Bottone, D.; Civelli, P.; Cotelli, M. S.; Damiolini, E.; Galbassini, G.; Gatta, D.; Ghirardelli, M. L.; Magri, R.;
Malamani, P.; Mendeni, M.; Molinari, S.; Morotti, A.; Salada, L.; Turla, M.; Vender, A.; Tincani, A.;
Brucato, A.; Franceschini, F.; Furloni, R.; Andreoli, L., Association between treatment with colchicine and
improved survival in a single-centre cohort of adult hospitalised patients with COVID-19 pneumonia and
acute respiratory distress syndrome. Ann Rheum Dis 2020.
514. Schaefer, I. M.; Padera, R. F.; Solomon, I. H.; Kanjilal, S.; Hammer, M. M.; Hornick, J. L.; Sholl, L. M.,
In situ detection of SARS-CoV-2 in lungs and airways of patients with COVID-19. Mod Pathol 2020, 1-11.
515. Schlottau, K.; Rissmann, M.; Graaf, A.; Schön, J.; Sehl, J.; Wylezich, C.; Höper, D.; Mettenleiter, T. C.;
Balkema-Buschmann, A.; Harder, T.; Grund, C.; Hoffmann, D.; Breithaupt, A.; Beer, M., SARS-CoV-2 in
fruit bats, ferrets, pigs, and chickens: an experimental transmission study. The Lancet Microbe 2020.
https://doi.org/10.1016/S2666-5247(20)30089-6
516. Schnirring, L., New coronavirus infects health workers, spreads to Korea.
http://www.cidrap.umn.edu/news-perspective/2020/01/new-coronavirus-infects-health-workers-
spreads-korea.
517. Schuit, M.; Ratnesar-Shumate, S.; Yolitz, J.; Williams, G.; Weaver, W.; Green, B.; Miller, D.; Krause,
M.; Beck, K.; Wood, S.; Holland, B.; Bohannon, J.; Freeburger, D.; Hooper, I.; Biryukov, J.; Altamura, L. A.;
Wahl, V.; Hevey, M.; Dabisch, P., Airborne SARS-CoV-2 is Rapidly Inactivated by Simulated Sunlight. The
Journal of Infectious Diseases 2020. https://doi.org/10.1093/infdis/jiaa334
518. Schwartz, D. A., An analysis of 38 pregnant women with COVID-19, their newborn infants, and
maternal-fetal transmission of SARS-CoV-2: maternal coronavirus infections and pregnancy outcomes.
Archives of Pathology & Laboratory Medicine 2020.
519. Sciences, C. A. o. M., Safety and Immunogenicity Study of an Inactivated SARS-CoV-2 Vaccine for
Preventing Against COVID-19. Safety and Immunogenicity Study of an Inactivated SARS-CoV-2 Vaccine
for Preventing Against COVID-19.
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 63
520. Security, J. C. f. H., 2019-nCoV resources and updates on the emerging novel coronavirus. 2020.
http://www.centerforhealthsecurity.org/resources/2019-nCoV/
521. Sekine, T.; Perez-Potti, A.; Rivera-Ballesteros, O.; Strålin, K.; Gorin, J.-B.; Olsson, A.; Llewellyn-Lacey,
S.; Kamal, H.; Bogdanovic, G.; Muschiol, S.; Wullimann, D. J.; Kammann, T.; Emgård, J.; Parrot, T.;
Folkesson, E.; Rooyackers, O.; Eriksson, L. I.; Sönnerborg, A.; Allander, T.; Albert, J.; Nielsen, M.;
Klingström, J.; Gredmark-Russ, S.; Björkström, N. K.; Sandberg, J. K.; Price, D. A.; Ljunggren, H.-G.;
Aleman, S.; Buggert, M., Robust T cell immunity in convalescent individuals with asymptomatic or mild
COVID-19. bioRxiv 2020, 2020.06.29.174888.
https://www.biorxiv.org/content/biorxiv/early/2020/06/29/2020.06.29.174888.full.pdf
522. Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Steel, K. J. A.; Hemmings, O.; O'Bryne, A.; Kouphou, N.;
Pickering, S.; Galao, R.; Betancor, G.; Wilson, H. D.; Signell, A. W.; Winstone, H.; Kerridge, C.; Temperton,
N.; Snell, L.; Bisnauthsing, K.; Moore, A.; Green, A.; Martinez, L.; Stokes, B.; Honey, J.; Izquierdo-Barras,
A.; Arbane, G.; Patel, A.; OConnell, L.; O Hara, G.; MacMahon, E.; Douthwaite, S.; Nebbia, G.; Batra, R.;
Martinez-Nunez, R.; Edgeworth, J. D.; Neil, S. J. D.; Malim, M. H.; Doores, K., Longitudinal evaluation and
decline of antibody responses in SARS-CoV-2 infection. medRxiv 2020, 2020.07.09.20148429.
https://www.medrxiv.org/content/medrxiv/early/2020/07/11/2020.07.09.20148429.full.pdf
523. sermet, i.; temmam, s.; huon, c.; behillil, s.; gadjos, v.; bigot, t.; lurier, t.; chretien, d.; backovick, m.;
Moisan-Delaunay, A.; donati, f.; albert, m.; foucaud, e.; Mesplees, B.; benoist, g.; fayes, a.; duval-
arnould, m.; cretolle, c.; charbit, m.; aubart, m.; Auriau, J.; lorrot, m.; Kariyawasam, D.; fertita, l.;
Orliaguet, G.; pigneur, b.; Bader-Meunier, B.; briand, c.; toubiana, j.; Guilleminot, T.; van der werf, s.;
leruez-ville, m.; eloit, m., Prior infection by seasonal coronaviruses does not prevent SARS-CoV-2
infection and associated Multisystem Inflammatory Syndrome in children. medRxiv 2020,
2020.06.29.20142596.
https://www.medrxiv.org/content/medrxiv/early/2020/06/30/2020.06.29.20142596.full.pdf
524. Sharma, A.; Kumar Sharma, S.; Shi, Y.; Bucci, E.; Carafoli, E.; Melino, G.; Bhattacherjee, A.; Das, G.,
BCG vaccination policy and preventive chloroquine usage: do they have an impact on COVID-19
pandemic? Cell Death & Disease 2020, 11 (7), 516. https://doi.org/10.1038/s41419-020-2720-9
525. Shekerdemian, L. S.; Mahmood, N. R.; Wolfe, K. K.; Riggs, B. J.; Ross, C. E.; McKiernan, C. A.;
Heidemann, S. M.; Kleinman, L. C.; Sen, A. I.; Hall, M. W.; Priestley, M. A.; McGuire, J. K.; Boukas, K.;
Sharron, M. P.; Burns, J. P.; Collaborative, f. t. I. C.-P., Characteristics and Outcomes of Children With
Coronavirus Disease 2019 (COVID-19) Infection Admitted to US and Canadian Pediatric Intensive Care
Units. JAMA Pediatrics 2020. https://doi.org/10.1001/jamapediatrics.2020.1948
526. Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; Wang, F.; Li, D.; Yang, M.; Xing, L.; Wei, J.; Xiao,
H.; Yang, Y.; Qu, J.; Qing, L.; Chen, L.; Xu, Z.; Peng, L.; Li, Y.; Zheng, H.; Chen, F.; Huang, K.; Jiang, Y.; Liu,
D.; Zhang, Z.; Liu, Y.; Liu, L., Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent
Plasma. JAMA 2020. https://doi.org/10.1001/jama.2020.4783
527. Shen, Y.; Xu, W.; Li, C.; Handel, A.; Martinez, L.; Ling, F.; Ebell, M.; Fu, X.; Pan, J.; Ren, J.; Gu, W.;
Chen, E., A cluster of COVID-19 infections indicating person-to-person transmission among casual
contacts from social gatherings: An outbreak case-contact investigation. Open Forum Infectious Diseases
2020. https://doi.org/10.1093/ofid/ofaa231
528. Sheridan, C., Convalescent serum lines up as first-choice treatment for coronavirus. Nature
Biotechnology 2020. https://www.nature.com/articles/d41587-020-00011-1
529. Sheridan, C., Coronavirus and the race to distribute reliable diagnostics.
https://www.nature.com/articles/d41587-020-00002-2
.
530. Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; Zhao, Y.;
Liu, P.; Liang, L.; Cui, P.; Wang, J.; Zhang, X.; Guan, Y.; Tan, W.; Wu, G.; Chen, H.; Bu, Z., Susceptibility of
ferrets, cats, dogs, and other domesticated animals to SARScoronavirus 2. Science 2020, eabb7015.
https://science.sciencemag.org/content/sci/early/2020/04/07/science.abb7015.full.pdf
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 64
531. Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; Huang, H.;
Yang, B.; Huang, C., Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19
in Wuhan, China. JAMA Cardiology 2020. https://doi.org/10.1001/jamacardio.2020.0950
532. Shin, D.; Mukherjee, R.; Grewe, D.; Bojkova, D.; Baek, K.; Bhattacharya, A.; Schulz, L.; Widera, M.;
Mehdipour, A. R.; Tascher, G.; Geurink, P. P.; Wilhelm, A.; van der Heden van Noort, G. J.; Ovaa, H.;
Müller, S.; Knobeloch, K.-P.; Rajalingam, K.; Schulman, B. A.; Cinatl, J.; Hummer, G.; Ciesek, S.; Dikic, I.,
Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020.
https://doi.org/10.1038/s41586-020-2601-5
533. Sia, S. F.; Yan, L. M.; Chin, A. W. H.; Fung, K.; Choy, K. T.; Wong, A. Y. L.; Kaewpreedee, P.; Perera, R.;
Poon, L. L. M.; Nicholls, J. M.; Peiris, M.; Yen, H. L., Pathogenesis and transmission of SARS-CoV-2 in
golden hamsters. Nature 2020.
534. Silverman, J. D.; Hupert, N.; Washburne, A. D., Using influenza surveillance networks to estimate
state-specific prevalence of SARS-CoV-2 in the United States. Science Translational Medicine 2020,
eabc1126.
https://stm.sciencemag.org/content/scitransmed/early/2020/06/22/scitranslmed.abc1126.full.pdf
535. Sinovac, Clinical Trial of Efficacy and Safety of Sinovac's Adsorbed COVID-19 (Inactivated) Vaccine in
Healthcare Professionals (PROFISCOV).
https://clinicaltrials.gov/ct2/show/NCT04456595?term=vaccine&cond=covid-19&draw=2&rank=1
.
536. Sinovac, Safety and Immunogenicity Study of Inactivated Vaccine for Prophylaxis of SARS CoV-2
Infection (COVID-19).
https://clinicaltrials.gov/ct2/show/NCT04352608?term=sinovac&draw=2&rank=12
.
537. Sinovac, Sinovac reports positive data from Phase I/II trials of CoronaVac.
https://www.clinicaltrialsarena.com/news/sinovac-coronavac-data/
.
538. Sit, T. H. C.; Brackman, C. J.; Ip, S. M.; Tam, K. W. S.; Law, P. Y. T.; To, E. M. W.; Yu, V. Y. T.; Sims, L.
D.; Tsang, D. N. C.; Chu, D. K. W.; Perera, R.; Poon, L. L. M.; Peiris, M., Infection of dogs with SARS-CoV-2.
Nature 2020.
539. Skalina, K. A.; Goldstein, D. Y.; Sulail, J.; Hahm, E.; Narlieva, M.; Szymczak, W.; Fox, A. S., Extended
Storage of SARS-CoV2 Nasopharyngeal Swabs Does Not Negatively Impact Results of Molecular-Based
Testing. medRxiv 2020, 2020.05.16.20104158.
https://www.medrxiv.org/content/medrxiv/early/2020/05/20/2020.05.16.20104158.full.pdf
540. Skipper, C. P.; Pastick, K. A.; Engen, N. W.; Bangdiwala, A. S.; Abassi, M.; Lofgren, S. M.; Williams, D.
A.; Okafor, E. C.; Pullen, M. F.; Nicol, M. R.; Nascene, A. A.; Hullsiek, K. H.; Cheng, M. P.; Luke, D.; Lother,
S. A.; MacKenzie, L. J.; Drobot, G.; Kelly, L. E.; Schwartz, I. S.; Zarychanski, R.; McDonald, E. G.; Lee, T. C.;
Rajasingham, R.; Boulware, D. R., Hydroxychloroquine in Nonhospitalized Adults With Early COVID-19.
Annals of Internal Medicine 2020, 0 (0), null. https://www.acpjournals.org/doi/abs/10.7326/M20-4207
541. Somekh, E.; Gleyzer, A.; Heller, E.; Lopian, M.; Kashani-Ligumski, L.; Czeiger, S.; Schindler, Y.;
Lessing, J. B.; Stein, M., The Role of Children in the Dynamics of Intra Family Coronavirus 2019 Spread in
Densely Populated Area. Pediatr Infect Dis J 2020, 39 (8), e202-e204.
542. Somers, E. C.; Eschenauer, G. A.; Troost, J. P.; Golob, J. L.; Gandhi, T. N.; Wang, L.; Zhou, N.; Petty, L.
A.; Baang, J. H.; Dillman, N. O.; Frame, D.; Gregg, K. S.; Kaul, D. R.; Nagel, J.; Patel, T. S.; Zhou, S.; Lauring,
A. S.; Hanauer, D. A.; Martin, E.; Sharma, P.; Fung, C. M.; Pogue, J. M., Tocilizumab for treatment of
mechanically ventilated patients with COVID-19. Clinical Infectious Diseases 2020.
https://doi.org/10.1093/cid/ciaa954
543. Song, J.-Y.; Yun, J.-G.; Noh, J.-Y.; Cheong, H.-J.; Kim, W.-J., Covid-19 in South Korea Challenges of
Subclinical Manifestations. New England Journal of Medicine 2020.
https://www.nejm.org/doi/full/10.1056/NEJMc2001801
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 65
544. Stadnytskyi, V.; Bax, C. E.; Bax, A.; Anfinrud, P., The airborne lifetime of small speech droplets and
their potential importance in SARS-CoV-2 transmission. Proceedings of the National Academy of Sciences
2020, 202006874. https://www.pnas.org/content/pnas/early/2020/05/12/2006874117.full.pdf
545. Strohbehn, G. W.; Heiss, B. L.; Rouhani, S. J.; Trujillo, J. A.; Yu, J.; Kacew, A. J.; Higgs, E. F.;
Bloodworth, J. C.; Cabanov, A.; Wright, R. C.; Koziol, A.; Weiss, A.; Danahey, K.; Karrison, T. G.; Edens, C.
C.; Ventura, I. B.; Pettit, N. N.; Patel, B.; Pisano, J.; Strek, M. E.; Gajewski, T. F.; Ratain, M. J.; Reid, P. D.,
COVIDOSE: Low-dose tocilizumab in the treatment of Covid-19. medRxiv 2020, 2020.07.20.20157503.
http://medrxiv.org/content/early/2020/07/26/2020.07.20.20157503.abstract
546. Stubblefield, W. B.; Talbot, H. K.; Feldstein, L.; Tenforde, M. W.; Rasheed, M. A. U.; Mills, L.; Lester,
S. N.; Freeman, B.; Thornburg, N. J.; Jones, I. D.; Ward, M. J.; Lindsell, C. J.; Baughman, A.; Halasa, N.;
Grijalva, C. G.; Rice, T. W.; Patel, M. M.; Self, W. H.; Investigators, I. V. E. i. t. C. I., Seroprevalence of
SARS-CoV-2 Among Frontline Healthcare Personnel During the First Month of Caring for COVID-19
Patients Nashville, Tennessee. Clinical Infectious Diseases 2020. https://doi.org/10.1093/cid/ciaa936
547. Su, H.; Yang, M.; Wan, C.; Yi, L.-X.; Tang, F.; Zhu, H.-Y.; Yi, F.; Yang, H.-C.; Fogo, A. B.; Nie, X.; Zhang,
C., Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China.
Kidney International. https://doi.org/10.1016/j.kint.2020.04.003
548. Su, Y. C.; Anderson, D. E.; Young, B. E.; Zhu, F.; Linster, M.; Kalimuddin, S.; Low, J. G.; Yan, Z.;
Jayakumar, J.; Sun, L.; Yan, G. Z.; Mendenhall, I. H.; Leo, Y.-S.; Lye, D. C.; Wang, L.-F.; Smith, G. J.,
Discovery of a 382-nt deletion during the early evolution of SARS-CoV-2. bioRxiv 2020,
2020.03.11.987222.
https://www.biorxiv.org/content/biorxiv/early/2020/03/12/2020.03.11.987222.full.pdf
549. Suarez, D. L.; Pantin-Jackwood, M. J.; Swayne, D. E.; Lee, S. A.; DeBlois, S. M.; Spackman, E., Lack of
susceptibility of poultry to SARS-CoV-2 and MERS-CoV. bioRxiv 2020, 2020.06.16.154658.
http://biorxiv.org/content/early/2020/06/16/2020.06.16.154658.abstract
550. Sukhyun, R.; Seikh Taslim, A.; Cheolsun, J.; Baekjin, K.; Benjamin, J. C., Effect of Nonpharmaceutical
Interventions on Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, South Korea, 2020.
Emerging Infectious Disease journal 2020, 26 (10).
https://wwwnc.cdc.gov/eid/article/26/10/20-
1886_article
551. Sun, J.; Zhu, A.; Li, H.; Zheng, K.; Zhuang, Z.; Chen, Z.; Shi, Y.; Zhang, Z.; Chen, S. B.; Liu, X.; Dai, J.; Li,
X.; Huang, S.; Huang, X.; Luo, L.; Wen, L.; Zhuo, J.; Li, Y.; Wang, Y.; Zhang, L.; Zhang, Y.; Li, F.; Feng, L.;
Chen, X.; Zhong, N.; Yang, Z.; Huang, J.; Zhao, J.; Li, Y. M., Isolation of Infectious SARS-CoV-2 from Urine
of a COVID-19 Patient. Emerg Microbes Infect 2020, 1-8.
552. Sun, S.; Cai, X.; Wang, H.; He, G.; Lin, Y.; Lu, B.; Chen, C.; Pan, Y.; Hu, X., Abnormalities of peripheral
blood system in patients with COVID-19 in Wenzhou, China. Clinica Chimica Acta 2020, 507, 174-180.
http://www.sciencedirect.com/science/article/pii/S0009898120301790
553. Sun, S. H.; Chen, Q.; Gu, H. J.; Yang, G.; Wang, Y. X.; Huang, X. Y.; Liu, S. S.; Zhang, N. N.; Li, X. F.;
Xiong, R.; Guo, Y.; Deng, Y. Q.; Huang, W. J.; Liu, Q.; Liu, Q. M.; Shen, Y. L.; Zhou, Y.; Yang, X.; Zhao, T. Y.;
Fan, C. F.; Zhou, Y. S.; Qin, C. F.; Wang, Y. C., A Mouse Model of SARS-CoV-2 Infection and Pathogenesis.
Cell Host Microbe 2020.
554. Suthar, M. S.; Zimmerman, M. G.; Kauffman, R. C.; Mantus, G.; Linderman, S. L.; Hudson, W. H.;
Vanderheiden, A.; Nyhoff, L.; Davis, C. W.; Adekunle, S.; Affer, M.; Sherman, M.; Reynolds, S.; Verkerke,
H. P.; Alter, D. N.; Guarner, J.; Bryksin, J.; Horwath, M.; Arthur, C. M.; Saakadze, N.; Smith, G. H.;
Edupuganti, S.; Scherer, E. M.; Hellmeister, K.; Cheng, A.; Morales, J. A.; Neish, A. S.; Stowell, S. R.; Frank,
F.; Ortlund, E.; Anderson, E.; Menachery, V. D.; Rouphael, N.; Mehta, A.; Stephens, D. S.; Ahmed, R.;
Roback, J. D.; Wrammert, J., Rapid generation of neutralizing antibody responses in COVID-19 patients.
Cell Reports Medicine 2020. https://doi.org/10.1016/j.xcrm.2020.100040
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 66
555. Szablewski, C. M.; Chang, K. T.; Brown, M. M.; al., e., SARS-CoV-2 Transmission and Infection Among
Attendees of an Overnight Camp Georgia, June 2020. Morbidity and Mortality Weekly Report 2020,
ePub: 31 July 2020. https://www.cdc.gov/mmwr/volumes/69/wr/mm6931e1.htm
556. Tabata, S.; Imai, K.; Kawano, S.; Ikeda, M.; Kodama, T.; Miyoshi, K.; Obinata, H.; Mimura, S.; Kodera,
T.; Kitagaki, M.; Sato, M.; Suzuki, S.; Ito, T.; Uwabe, Y.; Tamura, K., Clinical characteristics of COVID-19 in
104 people with SARS-CoV-2 infection on the <em>Diamond Princess</em> cruise ship: a retrospective
analysis. The Lancet Infectious Diseases. https://doi.org/10.1016/S1473-3099(20)30482-5
557. Taboada, B.; Vazquez-Perez, J. A.; Muñoz Medina, J. E.; Ramos Cervantes, P.; Escalera-Zamudio, M.;
Boukadida, C.; Sanchez-Flores, A.; Isa, P.; Mendieta Condado, E.; Martínez-Orozco, J. A.; Becerril-Vargas,
E.; Salas-Hernández, J.; Grande, R.; González-Torres, C.; Gaytán-Cervantes, F. J.; Vazquez, G.; Pulido, F.;
Araiza Rodríguez, A.; Garcés Ayala, F.; González Bonilla, C. R.; Grajales Muñiz, C.; Borja Aburto, V. H.;
Barrera Badillo, G.; López, S.; Hernández Rivas, L.; Perez-Padilla, R.; López Martínez, I.; Ávila-os, S.;
Ruiz-Palacios, G.; Ramírez-González, J. E.; Arias, C. F., Genomic Analysis of Early SARS-CoV-2 Variants
Introduced in Mexico. Journal of Virology 2020, JVI.01056-20.
https://jvi.asm.org/content/jvi/early/2020/07/02/JVI.01056-20.full.pdf
558. Tan, W.; Lu, Y.; Zhang, J.; Wang, J.; Dan, Y.; Tan, Z.; He, X.; Qian, C.; Sun, Q.; Hu, Q.; Liu, H.; Ye, S.;
Xiang, X.; Zhou, Y.; Zhang, W.; Guo, Y.; Wang, X.-H.; He, W.; Wan, X.; Sun, F.; Wei, Q.; Chen, C.; Pan, G.;
Xia, J.; Mao, Q.; Chen, Y.; Deng, G., Viral Kinetics and Antibody Responses in Patients with COVID-19.
medRxiv 2020, 2020.03.24.20042382.
https://www.medrxiv.org/content/medrxiv/early/2020/03/26/2020.03.24.20042382.full.pdf
559. Tang, W.; Cao, Z.; Han, M.; Wang, Z.; Chen, J.; Sun, W.; Wu, Y.; Xiao, W.; Liu, S.; Chen, E.; Chen, W.;
Wang, X.; Yang, J.; Lin, J.; Zhao, Q.; Yan, Y.; Xie, Z.; Li, D.; Yang, Y.; Liu, L.; Qu, J.; Ning, G.; Shi, G.; Xie, Q.,
Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label,
randomised controlled trial. BMJ 2020, 369, m1849.
http://www.bmj.com/content/369/bmj.m1849.abstract
560. Temesgen, Z.; Assi, M.; Vergidis, P.; Rizza, S. A.; Bauer, P. R.; Pickering, B. W.; Razonable, R. R.;
Libertin, C. R.; Burger, C. D.; Orenstein, R.; Vargas, H. E.; Varatharaj Palraj, B. R.; Dababneh, A. S.;
Chappell, G.; Chappell, D.; Ahmed, O.; Sakemura, R.; Durrant, C.; Kenderian, S. S.; Badley, A., First Clinical
Use of Lenzilumab to Neutralize GM-CSF in Patients with Severe COVID-19 Pneumonia. medRxiv 2020,
2020.06.08.20125369. http://medrxiv.org/content/early/2020/06/14/2020.06.08.20125369.abstract
561. Tenforde, M. W.; Kim, S. S.; Lindsell, C. J.; al., e., Symptom Duration and Risk Factors for Delayed
Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network
United States, MarchJune 2020. Morbidity and Mortality Weekly Report 2020, ePub: 24 July 2020.
562. The Novel Coronavirus Pneumonia Emergency Response Epidemiology, T., The Epidemiological
Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) China, 2020. China
CDC Weekly 2020, 2, 1-10.
http://weekly.chinacdc.cn//article/id/e53946e2-c6c4-41e9-9a9b-
fea8db1a8f51
563. Thomas, P.; Alexander, P. E.; Ahmed, U.; Elderhorst, E.; El-Khechen, H.; Mammen, M. J.; Debono, V.
B.; Aponte Torres, Z.; Aryal, K.; Brocard, E.; Sagastuy, B.; Alhazzani, W., Vertical transmission risk of
SARS-CoV-2 infection in the third trimester: a systematic scoping review. The Journal of Maternal-Fetal
& Neonatal Medicine 2020, 1-8. https://doi.org/10.1080/14767058.2020.1786055
564. Thomas, P. R.; Karriker, L. A.; Ramirez, A.; Zhang, J.; Ellingson, J. S.; Crawford, K. K.; Bates, J. L.;
Hammen, K. J.; Holtkamp, D. J., Evaluation of time and temperature sufficient to inactivate porcine
epidemic diarrhea virus in swine feces on metal surfaces. Journal of Swine Health and Production 2015,
23 (2), 84.
565. Thomas, P. R.; Ramirez, A.; Zhang, J.; Ellingson, J. S.; Myers, J. N., Methods for inactivating PEDV in
Hog Trailers. Animal Industry Report 2015, 661 (1), 91.
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 67
566. To, K. K.-W.; Tsang, O. T.-Y.; Leung, W.-S.; Tam, A. R.; Wu, T.-C.; Lung, D. C.; Yip, C. C.-Y.; Cai, J.-P.;
Chan, J. M.-C.; Chik, T. S.-H., Temporal profiles of viral load in posterior oropharyngeal saliva samples
and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. The
Lancet Infectious Diseases 2020.
567. Tomasiewicz, K.; Piekarska, A.; Stempkowska-Rejek, J.; Serafińska, S.; Gawkowska, A.; Parczewski,
M.; Niścigorska-Olsen, J.; Łapiński, T. W.; Zarębska-Michaluk, D.; Kowalska, J. D.; Horban, A.; Flisiak, R.,
Tocilizumab for patients with severe COVID-19: a retrospective, multi-centre study. Expert Review of
Anti-infective Therapy 2020, null-null. https://doi.org/10.1080/14787210.2020.1800453
568. Treibel, T. A.; Manisty, C.; Burton, M.; McKnight, Á.; Lambourne, J.; Augusto, J. B.; Couto-Parada, X.;
Cutino-Moguel, T.; Noursadeghi, M.; Moon, J. C., COVID-19: PCR screening of asymptomatic health-care
workers at London hospital. The Lancet. https://doi.org/10.1016/S0140-6736(20)31100-4
569. Tsai, A.; Diawara, O.; Nahass, R. G.; Brunetti, L., Impact of tocilizumab administration on mortality
in severe COVID-19. medRxiv 2020, 2020.07.30.20114959.
http://medrxiv.org/content/early/2020/08/02/2020.07.30.20114959.abstract
570. Tsay, C.; Lejarza, F.; Stadtherr, M. A.; Baldea, M., Modeling, state estimation, and optimal control
for the US COVID-19 outbreak. Scientific Reports 2020, 10 (1), 10711.
https://doi.org/10.1038/s41598-
020-67459-8
571. Ucciferri, C.; Barone, M.; Vecchiet, J.; Falasca, K., Pidotimod in Paucisymptomatic SARS-CoV2
Infected Patients. Mediterr J Hematol Infect Dis 2020, 12 (1), e2020048.
572. UCLA, COVID-19 Cases in the United States. https://covid19.uclaml.org/model.html
.
573. Unger, S.; Christie-Holmes, N.; Guvenc, F.; Budylowski, P.; Mubareka, S.; Gray-Owen, S. D.;
O’Connor, D. L., Holder pasteurization of donated human milk is effective in inactivating SARS-CoV-2.
Canadian Medical Association Journal 2020, cmaj.201309.
https://www.cmaj.ca/content/cmaj/early/2020/07/09/cmaj.201309.1.full.pdf
574. Unwin, H. J. T.; Mishra, S.; Bradley, V. C.; Gandy, A.; Vollmer, M.; Mellan, T.; Coupland, H.; Ainslie,
K.; Whittaker, C.; Ish-Horowicz, J., State-level tracking of COVID-19 in the United States. 2020.
575. van der Sande, M.; Teunis, P.; Sabel, R., Professional and Home-Made Face Masks Reduce Exposure
to Respiratory Infections among the General Population. Plos One 2008, 3 (7). <Go to
ISI>://WOS:000264065800020
576. van Doremalen, N.; Bushmaker, T.; Morris, D. H.; Holbrook, M. G.; Gamble, A.; Williamson, B. N.;
Tamin, A.; Harcourt, J. L.; Thornburg, N. J.; Gerber, S. I.; Lloyd-Smith, J. O.; de Wit, E.; Munster, V. J.,
Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. New England Journal of
Medicine 2020. https://doi.org/10.1056/NEJMc2004973
577. van Doremalen, N.; Lambe, T.; Spencer, A.; Belij-Rammerstorfer, S.; Purushotham, J. N.; Port, J. R.;
Avanzato, V.; Bushmaker, T.; Flaxman, A.; Ulaszewska, M.; Feldmann, F.; Allen, E. R.; Sharpe, H.; Schulz,
J.; Holbrook, M.; Okumura, A.; Meade-White, K.; Pérez-Pérez, L.; Bissett, C.; Gilbride, C.; Williamson, B.
N.; Rosenke, R.; Long, D.; Ishwarbhai, A.; Kailath, R.; Rose, L.; Morris, S.; Powers, C.; Lovaglio, J.; Hanley,
P. W.; Scott, D.; Saturday, G.; de Wit, E.; Gilbert, S. C.; Munster, V. J., ChAdOx1 nCoV-19 vaccination
prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv 2020, 2020.05.13.093195.
https://www.biorxiv.org/content/biorxiv/early/2020/05/13/2020.05.13.093195.full.pdf
578. van Dorp, L.; Acman, M.; Richard, D.; Shaw, L. P.; Ford, C. E.; Ormond, L.; Owen, C. J.; Pang, J.; Tan,
C. C. S.; Boshier, F. A. T.; Ortiz, A. T.; Balloux, F., Emergence of genomic diversity and recurrent
mutations in SARS-CoV-2. Infection, Genetics and Evolution 2020, 104351.
http://www.sciencedirect.com/science/article/pii/S1567134820301829
579. Varatharaj, A.; Thomas, N.; Ellul, M. A.; al., e., Neurological and neuropsychiatric complications of
COVID-19 in 153 patients: a UK-wide surveillance study. The Lancet Psychiatry 2020.
https://doi.org/10.1016/S2215-0366(20)30287-X
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 68
580. Varga, Z.; Flammer, A. J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A. S.; Mehra, M.
R.; Schuepbach, R. A.; Ruschitzka, F.; Moch, H., Endothelial cell infection and endotheliitis in COVID-19.
The Lancet 2020, 395 (10234), 1417-1418. https://doi.org/10.1016/S0140-6736(20)30937-5
581. Vaxine, Monovalent Recombinant COVID19 Vaccine (COVAX19).
https://clinicaltrials.gov/ct2/show/NCT04453852?term=NCT04453852&draw=2&rank=1
.
582. Verdict, Cepheid to develop automated molecular test for coronavirus. Verdict Medical Devices:
2020. https://www.medicaldevice-network.com/news/cepheid-automated-test-coronavirus/
583. Vivanti, A. J.; Vauloup-Fellous, C.; Prevot, S.; Zupan, V.; Suffee, C.; Do Cao, J.; Benachi, A.; De Luca,
D., Transplacental transmission of SARS-CoV-2 infection. Nature Communications 2020, 11 (1), 3572.
https://doi.org/10.1038/s41467-020-17436-6
584. von Weyhern, C. H.; Kaufmann, I.; Neff, F.; Kremer, M., Early evidence of pronounced brain
involvement in fatal COVID-19 outcomes. The Lancet 2020.
https://doi.org/10.1016/S0140-
6736(20)31282-4
585. Walsh, K. A.; Jordan, K.; Clyne, B.; Rohde, D.; Drummond, L.; Byrne, P.; Ahern, S.; Carty, P. G.;
O'Brien, K. K.; O'Murchu, E.; O'Neill, M.; Smith, S. M.; Ryan, M.; Harrington, P., SARS-CoV-2 Detection,
Viral Load and Infectivity over the Course of an Infection: SARS-CoV-2 Detection, Viral Load and
Infectivity. The Journal of infection 2020, S0163-4453(20)30449-7.
https://pubmed.ncbi.nlm.nih.gov/32615199
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323671/
586. Wambier, C. G.; Vaño-Galván, S.; McCoy, J.; Gomez-Zubiaur, A.; Herrera, S.; Hermosa-Gelbard, Á.;
Moreno-Arrones, O. M.; Jiménez-Gómez, N.; González-Cantero, A.; Pascual, P. F.; Segurado-Miravalles,
G.; Shapiro, J.; Pérez-García, B.; Goren, A., Androgenetic Alopecia Present in the Majority of Hospitalized
COVID-19 Patients &#x2013; the &#x201c;Gabrin sign&#x201d. Journal of the American Academy of
Dermatology. https://doi.org/10.1016/j.jaad.2020.05.079
587. Wan, Y.; Shang, J.; Graham, R.; Baric, R. S.; Li, F., Receptor recognition by novel coronavirus from
Wuhan: An analysis based on decade-long structural studies of SARS. Journal of Virology 2020,
JVI.00127-20. https://jvi.asm.org/content/jvi/early/2020/01/23/JVI.00127-20.full.pdf
588. Wang, B.; Hu, M.; Ren, Y.; Xu, X.; Wang, Z.; Lyu, X.; Wu, W.; Li, Z.; Gong, X.; Xiang, Z.; Tang, L.; Peng,
Y.; Wang, M., Evaluation of seven commercial SARS-CoV-2 RNA detection kits based on real-time
polymerase chain reaction (PCR) in China. Clinical Chemistry and Laboratory Medicine (CCLM) 2020, (0),
000010151520200271.
https://www.degruyter.com/view/journals/cclm/ahead-of-print/article-10.1515-
cclm-2020-0271/article-10.1515-cclm-2020-0271.xml
589. Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.;
Li, Y.; Wang, X.; Peng, Z., Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel
CoronavirusInfected Pneumonia in Wuhan, China. JAMA 2020.
https://doi.org/10.1001/jama.2020.1585
https://jamanetwork.com/journals/jama/articlepdf/2761044/jama_wang_2020_oi_200019.pdf
590. Wang, D.; Li, R.; Wang, J.; Jiang, Q.; Gao, C.; Yang, J.; Ge, L.; Hu, Q., Correlation analysis between
disease severity and clinical and biochemical characteristics of 143 cases of COVID-19 in Wuhan, China: a
descriptive study. BMC Infectious Diseases 2020, 20 (1), 519.
https://doi.org/10.1186/s12879-020-
05242-w
591. Wang, D.; You, Y.; Zhou, X.; Zong, Z.; Huang, H.; Zhang, H.; Yong, X.; Cheng, Y.; Yang, L.; Guo, Q.;
Long, Y.; Liu, Y.; Huang, J.; Du, L., Selection of homemade mask materials for preventing transmission of
COVID-19: a laboratory study. medRxiv 2020.
592. Wang, K.; Zhao, S.; Li, H.; Song, Y.; Wang, L.; Wang, M. H.; Peng, Z.; Li, H.; He, D., Real-time
estimation of the reproduction number of the novel coronavirus disease (COVID-19) in China in 2020
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 69
based on incidence data. Annals of Translational Medicine 2020, 8 (11), 689.
http://atm.amegroups.com/article/view/43447
593. Wang, S.; Ma, P.; Zhang, S.; Song, S.; Wang, Z.; Ma, Y.; Xu, J.; Wu, F.; Duan, L.; Yin, Z.; Luo, H.; Xiong,
N.; Xu, M.; Zeng, T.; Jin, Y., Fasting blood glucose at admission is an independent predictor for 28-day
mortality in patients with COVID-19 without previous diagnosis of diabetes: a multi-centre retrospective
study. Diabetologia 2020. https://doi.org/10.1007/s00125-020-05209-1
594. Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W., Detection of SARS-CoV-2 in Different
Types of Clinical Specimens. JAMA 2020. https://doi.org/10.1001/jama.2020.3786
595. Wang, X.; Ferro, E. G.; Zhou, G.; Hashimoto, D.; Bhatt, D. L., Association Between Universal Masking
in a Health Care System and SARS-CoV-2 Positivity Among Health Care Workers. JAMA 2020.
https://doi.org/10.1001/jama.2020.12897
596. Wang, X.; Pan, Y.; Zhang, D.; Chen, L.; Jia, L.; Li, X.; Yang, P.; Wang, Q.; Macintyre, C. R., Basic
epidemiological parameter values from data of real-world in mega-cities: the characteristics of COVID-19
in Beijing, China. BMC Infectious Diseases 2020, 20 (1), 526.
https://doi.org/10.1186/s12879-020-05251-
9
597. Wang, Y.; Teunis, P., Strongly Heterogeneous Transmission of COVID-19 in Mainland China: Local
and Regional Variation. Frontiers in Medicine 2020, 7 (329).
https://www.frontiersin.org/article/10.3389/fmed.2020.00329
598. Wang, Y.; Tian, H.; Zhang, L.; Zhang, M.; Guo, D.; Wu, W.; Zhang, X.; Kan, G. L.; Jia, L.; Huo, D.; Liu,
B.; Wang, X.; Sun, Y.; Wang, Q.; Yang, P.; MacIntyre, C. R., Reduction of secondary transmission of SARS-
CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing,
China. BMJ Global Health 2020, 5 (5), e002794.
https://gh.bmj.com/content/bmjgh/5/5/e002794.full.pdf
599. Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.;
Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.;
Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao,
L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F. G.; Horby, P. W.; Cao, B.; Wang, C., Remdesivir
in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The
Lancet 2020, 395 (10236), 1569-1578.
http://www.sciencedirect.com/science/article/pii/S0140673620310229
600. Watson, C.; Cicero, A.; Blumenstock, J.; Fraser, M., A National Plan to Enable Comprehensive
COVID-19 Case Finding and Contact; Johns Hopkins Center for Health Security: 2020.
https://www.centerforhealthsecurity.org/our-work/pubs_archive/pubs-pdfs/2020/a-national-plan-to-
enable-comprehensive-COVID-19-case-finding-and-contact-tracing-in-the-US.pdf
601. WCS, A Tiger at Bronx Zoo Tests Positive for COVID-19; The Tiger and the Zoo’s Other Cats Are Doing
Well at This Time.
https://newsroom.wcs.org/News-
Releases/articleType/ArticleView/articleId/14010/A-Tiger-at-Bronx-Zoo-Tests-Positive-for-COVID-19-
The-Tiger-and-the-Zoos-Other-Cats-Are-Doing-Well-at-This-Time.aspx (accessed April 6, 2020).
602. Wei, W. E.; Li, Z.; Chiew, C. J.; Yong, S. E.; Toh, M. P.; Lee, V. J., Presymptomatic transmission of
SARS-CoV-2 - Singapore, January 23 - March 16, 2020. Morbidity and Mortality Weekly Report 2020,
ePub (1 April 2020). https://www.cdc.gov/mmwr/volumes/69/wr/mm6914e1.htm
603. Wei, Y.; Wei, L.; Liu, Y.; Huang, L.; Shen, S.; Zhang, R.; Chen, J.; Zhao, Y.; Shen, H.; Chen, F., A
systematic review and meta-analysis reveals long and dispersive incubation period of COVID-19.
medRxiv 2020, 2020.06.20.20134387.
https://www.medrxiv.org/content/medrxiv/early/2020/06/22/2020.06.20.20134387.full.pdf
604. Weill, J. A.; Stigler, M.; Deschenes, O.; Springborn, M. R., Social distancing responses to COVID-19
emergency declarations strongly differentiated by income. Proceedings of the National Academy of
Sciences 2020, 202009412. https://www.pnas.org/content/pnas/early/2020/07/28/2009412117.full.pdf
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 70
605. Weissman, D. N.; de Perio, M. A.; Radonovich, L. J., Jr, COVID-19 and Risks Posed to Personnel
During Endotracheal Intubation. JAMA 2020. https://doi.org/10.1001/jama.2020.6627
606. Wellinghausen, N.; Plonné, D.; Voss, M.; Ivanova, R.; Frodl, R.; Deininger, S., SARS-CoV-2-IgG
response is different in COVID-19 outpatients and asymptomatic contact persons. Journal of Clinical
Virology 2020, 130, 104542. http://www.sciencedirect.com/science/article/pii/S1386653220302845
607. Wen, W.; Su, W.; Tang, H.; Le, W.; Zhang, X.; Zheng, Y.; Liu, X.; Xie, L.; Li, J.; Ye, J.; Dong, L.; Cui, X.;
Miao, Y.; Wang, D.; Dong, J.; Xiao, C.; Chen, W.; Wang, H., Immune cell profiling of COVID-19 patients in
the recovery stage by single-cell sequencing. Cell Discov 2020, 6, 31.
608. Whitman, J. D.; Hiatt, J.; Mowrey, C. T.; al., e., Test performance evaluation of SARS-CoV-2
serological assays. Unpublished Preprint 2020.
https://www.dropbox.com/s/cd1628cau09288a/SARS-
CoV-2_Serology_Manuscript.pdf?dl=0
609. Whitworth, J., U.S. FDA ‘aware’ of China testing food for coronavirus.
https://www.foodsafetynews.com/2020/06/u-s-fda-aware-of-china-testing-food-for-coronavirus/
(accessed 06/22/2020).
610. WHO, Advice on the use of masks on the context of COVID-19. Interim Guidance. 5 June 2020.;
World Health Organization: 2020.
https://www.who.int/emergencies/diseases/novel-coronavirus-
2019/advice-for-public/when-and-how-to-use-masks
611. WHO, Diagnostic detection of Wuhan coronavirus 2019 by real-time RTPCR -Protocol and
preliminary evaluation as of Jan 13, 2020.
https://www.who.int/docs/default-
source/coronaviruse/wuhan-virus-assay-
v1991527e5122341d99287a1b17c111902.pdf?sfvrsn=d381fc88_2 (accessed 01/26/2020).
612. WHO, "Immunity passports" in the context of COVID-19; World Health Organization: 2020.
https://www.who.int/news-room/commentaries/detail/immunity-passports-in-the-context-of-covid-19
613. WHO, Infection prevention and control during health care when novel coronavirus (nCoV) infection
is suspected; 2020.
https://www.who.int/publications-detail/infection-prevention-and-control-during-
health-care-when-novel-coronavirus-(ncov)-infection-is-suspected-20200125
614. WHO, Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases.
615. WHO, Multisystem inflammatory syndrome in children and adolescents temporally related to
COVID-19. World Health Organization: 2020.
https://www.who.int/news-
room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-
covid-19
616. WHO, Novel Coronavirus (2019-nCoV) Situation Report-5 25 January 2020.
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200125-sitrep-5-2019-
ncov.pdf?sfvrsn=429b143d_4.
617. WHO, Novel Coronavirus (2019-nCoV) technical guidance: Laboratory testing for 2019-nCoV in
humans.
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-
guidance/laboratory-guidance.
618. WHO, Transmission of SARS-CoV-2: implications for infection prevention precautions; World Health
Organization: 2020.
https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-
implications-for-infection-prevention-precautions
619. Wiersinga, W. J.; Rhodes, A.; Cheng, A. C.; Peacock, S. J.; Prescott, H. C., Pathophysiology,
Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020.
https://doi.org/10.1001/jama.2020.12839
620. Wise, J., Covid-19: Remdesivir is recommended for authorisation by European Medicines Agency.
Bmj 2020, 369, m2610.
621. Wölfel, R.; Corman, V. M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M. A.; Niemeyer, D.;
Jones, T. C.; Vollmar, P.; Rothe, C.; Hoelscher, M.; Bleicker, T.; Brünink, S.; Schneider, J.; Ehmann, R.;
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 71
Zwirglmaier, K.; Drosten, C.; Wendtner, C., Virological assessment of hospitalized patients with COVID-
2019. Nature 2020. https://doi.org/10.1038/s41586-020-2196-x
622. Wolff, M. H.; Sattar, S. A.; Adegbunrin, O.; Tetro, J., Environmental survival and microbicide
inactivation of coronaviruses. In Coronaviruses with special emphasis on first insights concerning SARS,
Springer: 2005; pp 201-212.
623. Wong, M. C.; Javornik Cregeen, S. J.; Ajami, N. J.; Petrosino, J. F., Evidence of recombination in
coronaviruses implicating pangolin origins of nCoV-2019. bioRxiv 2020, 2020.02.07.939207.
https://www.biorxiv.org/content/biorxiv/early/2020/02/13/2020.02.07.939207.full.pdf
624. Wong, Y. C.; Lau, S. Y.; Wang To, K. K.; Mok, B. W. Y.; Li, X.; Wang, P.; Deng, S.; Woo, K. F.; Du, Z.; Li,
C.; Zhou, J.; Woo Chan, J. F.; Yuen, K. Y.; Chen, H.; Chen, Z., Natural transmission of bat-like SARS-CoV-
2PRRA variants in COVID-19 patients. Clinical Infectious Diseases 2020.
https://doi.org/10.1093/cid/ciaa953
625. Woolf, S. H.; Chapman, D. A.; Sabo, R. T.; Weinberger, D. M.; Hill, L., Excess Deaths From COVID-19
and Other Causes, March-April 2020. JAMA 2020. https://doi.org/10.1001/jama.2020.11787
626. Woolsey, C. B.; Borisevich, V.; Prasad, A. N.; Agans, K. N.; Deer, D. J.; Dobias, N. S.; Heymann, J. C.;
Foster, S. L.; Levine, C. B.; Medina, L.; Melody, K.; Geisbert, J. B.; Fenton, K. A.; Geisbert, T. W.; Cross, R.
W., Establishment of an African green monkey model for COVID-19. bioRxiv 2020, 2020.05.17.100289.
http://biorxiv.org/content/early/2020/05/17/2020.05.17.100289.abstract
627. Worobey, M.; Pekar, J.; Larsen, B. B.; Nelson, M. I.; Hill, V.; Joy, J. B.; Rambaut, A.; Suchard, M. A.;
Wertheim, J. O.; Lemey, P., The emergence of SARS-CoV-2 in Europe and the US. bioRxiv 2020,
2020.05.21.109322.
https://www.biorxiv.org/content/biorxiv/early/2020/05/23/2020.05.21.109322.full.pdf
628. Worthham, J. M.; Lee, J. T.; Althomsons, S.; al., e., Characteristics of Persons Who Died with COVID-
19 United States, February 12May 18, 2020. Morbidity and Mortality Weekly Report 2020, ePub: July
10, 2020 (69). https://www.cdc.gov/mmwr/volumes/69/wr/mm6928e1.htm
629. Wrapp, D.; Wang, N.; Corbett, K. S.; Goldsmith, J. A.; Hsieh, C.-L.; Abiona, O.; Graham, B. S.;
McLellan, J. S., Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. bioRxiv 2020,
2020.02.11.944462.
https://www.biorxiv.org/content/biorxiv/early/2020/02/15/2020.02.11.944462.full.pdf
630. Wright, E. S.; Lakdawala, S. S.; Cooper, V. S., SARS-CoV-2 genome evolution exposes early human
adaptations. bioRxiv 2020, 2020.05.26.117069.
https://www.biorxiv.org/content/biorxiv/early/2020/05/26/2020.05.26.117069.full.pdf
631. Wu, F.; Wang, A.; Liu, M.; Wang, Q.; Chen, J.; Xia, S.; Ling, Y.; Zhang, Y.; Xun, J.; Lu, L.; Jiang, S.; Lu,
H.; Wen, Y.; Huang, J., Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient
cohort and their implications. medRxiv 2020, 2020.03.30.20047365.
https://www.medrxiv.org/content/medrxiv/early/2020/04/06/2020.03.30.20047365.full.pdf
632. Wu, G.; Yang, P.; Xie, Y.; Woodruff, H. C.; Rao, X.; Guiot, J.; Frix, A.-N.; Louis, R.; Moutschen, M.; Li,
J.; Li, J.; Yan, C.; Du, D.; Zhao, S.; Ding, Y.; Liu, B.; Sun, W.; Albarello, F.; D'Abramo, A.; Schininà, V.;
Nicastri, E.; Occhipinti, M.; Barisione, G.; Barisione, E.; Halilaj, I.; Lovinfosse, P.; Wang, X.; Wu, J.; Lambin,
P., Development of a Clinical Decision Support System for Severity Risk Prediction and Triage of COVID-
19 Patients at Hospital Admission: an International Multicenter Study. European Respiratory Journal
2020, 2001104.
https://erj.ersjournals.com/content/erj/early/2020/06/25/13993003.01104-
2020.full.pdf
633. Wu, H.; Zhu, H.; Yuan, C.; Yao, C.; Luo, W.; Shen, X.; Wang, J.; Shao, J.; Xiang, Y., Clinical and
Immune Features of Hospitalized Pediatric Patients With Coronavirus Disease 2019 (COVID-19) in
Wuhan, China. JAMA Network Open 2020, 3 (6), e2010895-e2010895.
https://doi.org/10.1001/jamanetworkopen.2020.10895
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 72
634. Wu, J. T.; Leung, K.; Leung, G. M., Nowcasting and forecasting the potential domestic and
international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The
Lancet 2020. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30260-9/fulltext
635. Wu, L.-P.; Wang, N.-C.; Chang, Y.-H.; Tian, X.-Y.; Na, D.-Y.; Zhang, L.-Y.; Zheng, L.; Lan, T.; Wang, L.-
F.; Liang, G.-D., Duration of antibody responses after severe acute respiratory syndrome. Emerging
infectious diseases 2007, 13 (10), 1562.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851497/pdf/07-0576_finalD.pdf
636. Wu, P.; Duan, F.; Luo, C.; Liu, Q.; Qu, X.; Liang, L.; Wu, K., Characteristics of Ocular Findings of
Patients With Coronavirus Disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmology
2020. https://doi.org/10.1001/jamaophthalmol.2020.1291
637. Wuhan, A randomized, double-blind, placebo parallel-controlled phase I/II clinical trial for
inactivated Novel Coronavirus Pneumonia vaccine (Vero cells) (Wuhan Institute of Biological Products).
http://www.chictr.org.cn/showprojen.aspx?proj=52227
.
638. Wyllie, A. L.; Fournier, J.; Casanovas-Massana, A.; Campbell, M.; Tokuyama, M.; Vijayakumar, P.;
Geng, B.; Muenker, M. C.; Moore, A. J.; Vogels, C. B. F.; Petrone, M. E.; Ott, I. M.; Lu, P.; Lu-Culligan, A.;
Klein, J.; Venkataraman, A.; Earnest, R.; Simonov, M.; Datta, R.; Handoko, R.; Naushad, N.; Sewanan, L.
R.; Valdez, J.; White, E. B.; Lapidus, S.; Kalinich, C. C.; Jiang, X.; Kim, D. J.; Kudo, E.; Linehan, M.; Mao, T.;
Moriyama, M.; Oh, J. E.; Park, A.; Silva, J.; Song, E.; Takahashi, T.; Taura, M.; Weizman, O.-E.; Wong, P.;
Yang, Y.; Bermejo, S.; Odio, C.; Omer, S. B.; Dela Cruz, C. S.; Farhadian, S.; Martinello, R. A.; Iwasaki, A.;
Grubaugh, N. D.; Ko, A. I., Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than
nasopharyngeal swabs. medRxiv 2020, 2020.04.16.20067835.
https://www.medrxiv.org/content/medrxiv/early/2020/04/22/2020.04.16.20067835.full.pdf
639. Xiao, F.; Sun, J.; Xu, Y.; Li, F.; Huang, X.; Li, H.; Zhao, J.; Huang, J.; Zhao, J., Infectious SARS-CoV-2 in
Feces of Patient with Severe COVID-19. Emerging Infectious Diseases 2020, 26.
https://wwwnc.cdc.gov/eid/article/26/8/20-0681_article
640. Xiao, K.; Zhai, J.; Feng, Y.; Zhou, N.; Zhang, X.; Zou, J. J.; Li, N.; Guo, Y.; Li, X.; Shen, X.; Zhang, Z.; Shu,
F.; Huang, W.; Li, Y.; Zhang, Z.; Chen, R. A.; Wu, Y. J.; Peng, S. M.; Huang, M.; Xie, W. J.; Cai, Q. H.; Hou, F.
H.; Chen, W.; Xiao, L.; Shen, Y., Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins.
Nature 2020.
641. Xinhua, China detects large quantity of novel coronavirus at Wuhan seafood market
http://www.xinhuanet.com/english/2020-01/27/c_138735677.htm
.
642. Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; Zhang, X.; Pan,
A.; Wei, H., Effective treatment of severe COVID-19 patients with tocilizumab. Proceedings of the
National Academy of Sciences 2020, 202005615.
https://www.pnas.org/content/pnas/early/2020/04/27/2005615117.full.pdf
643. Xu, X. K.; Liu, X. F.; Wu, Y.; Ali, S. T.; Du, Z.; Bosetti, P.; Lau, E. H. Y.; Cowling, B. J.; Wang, L.,
Reconstruction of Transmission Pairs for novel Coronavirus Disease 2019 (COVID-19) in mainland China:
Estimation of Super-spreading Events, Serial Interval, and Hazard of Infection. Clin Infect Dis 2020.
644. Xue, K. S.; Bloom, J. D., Reconciling disparate estimates of viral genetic diversity during human
influenza infections. Nature Genetics 2019, 51 (9), 1298-1301.
https://doi.org/10.1038/s41588-019-
0349-3
645. Yan, C. H.; Faraji, F.; Prajapati, D. P.; Boone, C. E.; DeConde, A. S., In Association of chemosensory
dysfunction and Covid-
1
9 in patients presenting with influenza-
l
ike symptoms, International Forum of
Allergy & Rhinology, Wiley Online Library: 2020.
646. Yang, H.; Wang, C.; Poon, L., Novel coronavirus infection and pregnancy. Ultrasound in Obstetrics &
Gynecology 2020.
647. Yang, L.; Dai, J.; Zhao, J.; Wang, Y.; Deng, P.; Wang, J., Estimation of incubation period and serial
interval of COVID-19: analysis of 178 cases and 131 transmission chains in Hubei province, China.
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 73
Epidemiology and Infection 2020, 148, e117.
https://www.cambridge.org/core/article/estimation-of-
incubation-period-and-serial-interval-of-covid19-analysis-of-178-cases-and-131-transmission-chains-in-
hubei-province-china/C1B194C01268F005AAFBE8D50CB5F945
648. Yang, P.; Qi, J.; Zhang, S.; Bi, G.; Wang, X.; Yang, Y.; Sheng, B.; Mao, X., Feasibility of Controlling
COVID-19 Outbreaks in the UK by Rolling Interventions. medRxiv 2020, 2020.04.05.20054429.
https://www.medrxiv.org/content/medrxiv/early/2020/04/07/2020.04.05.20054429.full.pdf
649. Yehya, N.; Venkataramani, A.; Harhay, M. O., Statewide Interventions and Covid-19 Mortality in the
United States: An Observational Study. Clinical Infectious Diseases 2020.
https://doi.org/10.1093/cid/ciaa923
650. Yessayan, L.; Szamosfalvi, B.; Napolitano, L.; Singer, B.; Kurabayashi, K.; Song, Y.; Westover, A.;
Humes, D., Treatment of Cytokine Storm in COVID-19 Patients with Immunomodulatory Therapy. ASAIO
Journal 9000, Online First.
https://journals.lww.com/asaiojournal/Fulltext/9000/Treatment_of_Cytokine_Storm_in_COVID_19_Pati
ents.98488.aspx
651. Yu, B.; Li, C.; Chen, P.; Zhou, N.; Wang, L.; Li, J.; Jiang, H.; Wang, D. W., Low dose of
hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Sci China Life Sci 2020, 1-7.
652. Yu, N.; Li, W.; Kang, Q.; Zeng, W.; Feng, L.; Wu, J., No SARS-CoV-2 detected in amniotic fluid in mid-
pregnancy. The Lancet Infectious Diseases. https://doi.org/10.1016/S1473-3099(20)30320-0
653. Yu, W.-B.; Tang, G.-D.; Zhang, L.; Corlett, R. T., Decoding evolution and transmissions of novel
pneumonia coronavirus using the whole genomic data. ChinaXiv 2020.
http://www.chinaxiv.org/abs/202002.00033
654. Yu, W. B.; Tang, G. D.; Zhang, L.; Corlett, R. T., Decoding the evolution and transmissions of the
novel pneumonia coronavirus (SARS-CoV-2 / HCoV-19) using whole genomic data. Zool Res 2020, 41 (3),
247-257.
655. Yuan, B.; Liu, H.-Q.; Yang, Z.-R.; Chen, Y.-X.; Liu, Z.-Y.; Zhang, K.; Wang, C.; Li, W.-X.; An, Y.-W.;
Wang, J.-C.; Song, S., Recurrence of positive SARS-CoV-2 viral RNA in recovered COVID-19 patients
during medical isolation observation. Scientific Reports 2020, 10 (1), 11887.
https://doi.org/10.1038/s41598-020-68782-w
656. Yuki, F.; Eiichiro, S.; Naho, T.; Reiko, M.; Ikkoh, Y.; Yura, K. K.; Mayuko, S.; Konosuke, M.; Takeaki, I.;
Yugo, S.; Shohei, N.; Kazuaki, J.; Tadatsugu, I.; Tomimasa, S.; Motoi, S.; Hiroshi, N.; Hitoshi, O., Clusters of
Coronavirus Disease in Communities, Japan, JanuaryApril 2020. Emerging Infectious Disease journal
2020, 26 (9). https://wwwnc.cdc.gov/eid/article/26/9/20-2272_article
657. Yung, C. F.; Kam, K.-Q.; Chong, C. Y.; Nadua, K. D.; Li, J.; Hui Tan, N. W.; Ganapathy, S.; Lee, K. P.; Ng,
K. C.; Chan, Y. H.; Thoon, K. C., Household Transmission of SARS-CoV-2 from Adults to Children. The
Journal of Pediatrics 2020, S0022-3476(20)30852-0. https://pubmed.ncbi.nlm.nih.gov/32634405
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334921/
658. Zachariah, P.; Johnson, C. L.; Halabi, K. C.; Ahn, D.; Sen, A. I.; Fischer, A.; Banker, S. L.; Giordano, M.;
Manice, C. S.; Diamond, R.; Sewell, T. B.; Schweickert, A. J.; Babineau, J. R.; Carter, R. C.; Fenster, D. B.;
Orange, J. S.; McCann, T. A.; Kernie, S. G.; Saiman, L.; Group, f. t. C. P. C.-M., Epidemiology, Clinical
Features, and Disease Severity in Patients With Coronavirus Disease 2019 (COVID-19) in a Children’s
Hospital in New York City, New York. JAMA Pediatrics 2020, e202430-e202430.
https://doi.org/10.1001/jamapediatrics.2020.2430
659. Zaigham, M.; Andersson, O., Maternal and perinatal outcomes with COVID-19: A systematic review
of 108 pregnancies. Acta Obstet Gynecol Scand 2020.
660. Zangmeister, C. D.; Radney, J. G.; Vicenzi, E. P.; Weaver, J. L., Filtration Efficiencies of Nanoscale
Aerosol by Cloth Mask Materials Used to Slow the Spread of SARS CoV-2. ACS Nano 2020.
https://doi.org/10.1021/acsnano.0c05025
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 74
661. Zhan, C.; Chi, K. T.; Lai, Z.; Chen, X.; Mo, M., General Model for COVID-19 Spreading with
Consideration of Intercity Migration, Insufficient Testing and Active Intervention: Application to Study of
Pandemic Progression in Japan and USA. medRxiv 2020.
662. Zhang, J.; Litvinova, M.; Liang, Y.; Wang, Y.; Wang, W.; Zhao, S.; Wu, Q.; Merler, S.; Viboud, C.;
Vespignani, A.; Ajelli, M.; Yu, H., Changes in contact patterns shape the dynamics of the COVID-19
outbreak in China. Science 2020, eabb8001.
https://science.sciencemag.org/content/sci/early/2020/05/04/science.abb8001.full.pdf
663. Zhang, J.; Litvinova, M.; Wang, W.; Wang, Y.; Deng, X.; Chen, X.; Li, M.; Zheng, W.; Yi, L.; Chen, X.;
Wu, Q.; Liang, Y.; Wang, X.; Yang, J.; Sun, K.; Longini, I. M., Jr.; Halloran, M. E.; Wu, P.; Cowling, B. J.;
Merler, S.; Viboud, C.; Vespignani, A.; Ajelli, M.; Yu, H., Evolving epidemiology and transmission
dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study.
The Lancet Infectious Diseases. https://doi.org/10.1016/S1473-3099(20)30230-9
664. Zhang, J.; Wu, J.; Sun, X.; Xue, H.; Shao, J.; Cai, W.; Jing, Y.; Yue, M.; Dong, C., Associations of
hypertension with the severity and fatality of SARS-CoV-2 infection: A meta-analysis. Epidemiology and
Infection 2020, 1-19.
https://www.cambridge.org/core/article/associations-of-hypertension-with-the-
severity-and-fatality-of-sarscov2-infection-a-metaanalysis/4116FAD7D866737099F976E7E7FAEB15
665. Zhang, L.; Jackson, C. B.; Mou, H.; Ojha, A.; Rangarajan, E. S.; Izard, T.; Farzan, M.; Choe, H., The
D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv
2020, 2020.06.12.148726. http://biorxiv.org/content/early/2020/06/12/2020.06.12.148726.abstract
666. Zhang, Q.; Zhang, H.; Huang, K.; Yang, Y.; Hui, X.; Gao, J.; He, X.; Li, C.; Gong, W.; Zhang, Y.; Peng, C.;
Gao, X.; Chen, H.; Zou, Z.; Shi, Z.; Jin, M., SARS-CoV-2 neutralizing serum antibodies in cats: a serological
investigation. bioRxiv 2020, 2020.04.01.021196.
http://biorxiv.org/content/early/2020/04/03/2020.04.01.021196.abstract
667. Zhang, T.; Wu, Q.; Zhang, Z., Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19
Outbreak. Current Biology 2020, 30 (7), 1346-1351.e2.
http://www.sciencedirect.com/science/article/pii/S0960982220303602
668. Zhang, X.; Tan, Y.; Ling, Y.; Lu, G.; Liu, F.; Yi, Z.; Jia, X.; Wu, M.; Shi, B.; Xu, S.; Chen, J.; Wang, W.;
Chen, B.; Jiang, L.; Yu, S.; Lu, J.; Wang, J.; Xu, M.; Yuan, Z.; Zhang, Q.; Zhang, X.; Zhao, G.; Wang, S.; Chen,
S.; Lu, H., Viral and host factors related to the clinical outcome of COVID-19. Nature 2020.
https://doi.org/10.1038/s41586-020-2355-0
669. Zhao; Musa; Lin; Ran; Yang; Wang; Lou; Yang; Gao; He; Wang, Estimating the Unreported Number
of Novel Coronavirus (2019-nCoV) Cases in China in the First Half of January 2020: A Data-Driven
Modelling Analysis of the Early Outbreak. Journal of Clinical Medicine 2020, 9 (2), 388.
670. Zhao, G.; Jiang, Y.; Qiu, H.; Gao, T.; Zeng, Y.; Guo, Y.; Yu, H.; Li, J.; Kou, Z.; Du, L.; Tan, W.; Jiang, S.;
Sun, S.; Zhou, Y., Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with
Middle East Respiratory Syndrome-Coronavirus. PLoS One 2015, 10 (12), e0145561.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689477/pdf/pone.0145561.pdf
671. Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; Qian, S.; Hong, C.;
Wang, F.; Liu, Y.; Wang, Z.; He, Q.; He, B.; Zhang, T.; Ge, S.; Liu, L.; Zhang, J.; Xia, N.; Zhang, Z., Antibody
Responses to SARS-CoV-2 in Patients of Novel Coronavirus Disease 2019. SSRN 2020.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3546052#
672. Zhen-Dong, T.; An, T.; Ke-Feng, L.; Peng, L.; Hong-Ling, W.; Jing-Ping, Y.; Yong-Li, Z.; Jian-Bo, Y.,
Potential Presymptomatic Transmission of SARS-CoV-2, Zhejiang Province, China, 2020. Emerging
Infectious Disease journal 2020, 26 (5). https://wwwnc.cdc.gov/eid/article/26/5/20-0198_article
673. Zheng, S.; Fan, J.; Yu, F.; Feng, B.; Lou, B.; Zou, Q.; Xie, G.; Lin, S.; Wang, R.; Yang, X.; Chen, W.;
Wang, Q.; Zhang, D.; Liu, Y.; Gong, R.; Ma, Z.; Lu, S.; Xiao, Y.; Gu, Y.; Zhang, J.; Yao, H.; Xu, K.; Lu, X.; Wei,
G.; Zhou, J.; Fang, Q.; Cai, H.; Qiu, Y.; Sheng, J.; Chen, Y.; Liang, T., Viral load dynamics and disease
REQUIRED INFORMATION FOR EFFECTIVE INFECTIOUS DISEASE OUTBREAK RESPONSE SARS-CoV-2 (COVID-19)
Updated 8/4/2020
CLEARED FOR PUBLIC RELEASE 75
severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020:
retrospective cohort study. BMJ 2020, 369, m1443. https://www.ncbi.nlm.nih.gov/pubmed/32317267
674. Zhongchu, L., The sixth press conference of "Prevention and Control of New Coronavirus Infected
Pneumonia". Hubei Provincial Government: 2020.
http://www.hubei.gov.cn/hbfb/xwfbh/202001/t20200128_2015591.shtml
675. Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.;
Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B., Clinical course and risk factors for mortality of
adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet.
https://doi.org/10.1016/S0140-6736(20)30566-3
676. Zhou, H.; Chen, X.; Hu, T.; Li, J.; Song, H.; Liu, Y.; Wang, P.; Liu, D.; Yang, J.; Holmes, E. C.; Hughes, A.
C.; Bi, Y.; Shi, W., A novel bat coronavirus reveals natural insertions at the S1/S2 cleavage site of the
Spike protein and a possible recombinant origin of HCoV-19. bioRxiv 2020, 2020.03.02.974139.
https://www.biorxiv.org/content/biorxiv/early/2020/03/11/2020.03.02.974139.full.pdf
677. Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.;
Chen, H.-D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.-D.; Liu, M.-Q.; Chen, Y.; Shen, X.-R.; Wang, X.; Zheng, X.-
S.; Zhao, K.; Chen, Q.-J.; Deng, F.; Liu, L.-L.; Yan, B.; Zhan, F.-X.; Wang, Y.-Y.; Xiao, G.; Shi, Z.-L., Discovery
of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat
origin. bioRxiv 2020, 2020.01.22.914952.
https://www.biorxiv.org/content/biorxiv/early/2020/01/23/2020.01.22.914952.1.full.pdf
678. Zhu, F.-C.; Guan, X.-H.; Li, Y.-H.; Huang, J.-Y.; Jiang, T.; Hou, L.-H.; Li, J.-X.; Yang, B.-F.; Wang, L.;
Wang, W.-J.; Wu, S.-P.; Wang, Z.; Wu, X.-H.; Xu, J.-J.; Zhang, Z.; Jia, S.-Y.; Wang, B.-S.; Hu, Y.; Liu, J.-J.;
Zhang, J.; Qian, X.-A.; Li, Q.; Pan, H.-X.; Jiang, H.-D.; Deng, P.; Gou, J.-B.; Wang, X.-W.; Wang, X.-H.; Chen,
W., Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in
healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. The
Lancet 2020. https://doi.org/10.1016/S0140-6736(20)31605-6
679. Zhu, F.-C.; Li, Y.-H.; Guan, X.-H.; Hou, L.-H.; Wang, W.-J.; Li, J.-X.; Wu, S.-P.; Wang, B.-S.; Wang, Z.;
Wang, L.; Jia, S.-Y.; Jiang, H.-D.; Wang, L.; Jiang, T.; Hu, Y.; Gou, J.-B.; Xu, S.-B.; Xu, J.-J.; Wang, X.-W.;
Wang, W.; Chen, W., Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5
vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. The
Lancet 2020. https://doi.org/10.1016/S0140-6736(20)31208-3
680. Zhu, Y.; Chen, Y. Q., On a Statistical Transmission Model in Analysis of the Early Phase of COVID-19
Outbreak. Statistics in Biosciences 2020, 1-17.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113380/
681. Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Kang, M.; Song, Y.; Xia, J.; Guo, Q.;
Song, T.; He, J.; Yen, H.-L.; Peiris, M.; Wu, J., SARS-CoV-2 Viral Load in Upper Respiratory Specimens of
Infected Patients. New England Journal of Medicine 2020.
https://www.nejm.org/doi/full/10.1056/NEJMc2001737
682. Zydus, Novel Corona Virus-2019-nCov vaccine by intradermal route in healthy subjects. .
http://ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=45306&EncHid=&userName=vaccine
.