Concise Eurocode 2
for Bridges
A cement and concrete industry publication
For the design of concrete bridges to BS EN 1992-1-1 and BS EN 1992-2
and their National Annexes
O Brooker
BEng CEng MICE MIStructE
P A Jackson BSc(Hons) PhD CEng FICE FIStructE
S W Salim BEng(Hons) PhD CEng MICE
Foreword
The introduction of European standards to UK construction is a significant event as for the
first time all design and construction codes within the EU will be harmonised. The ten
design standards, known as the Eurocodes, will affect all design and construction activities as
current British Standards for structural design are due to be withdrawn in March 2010.
The cement and concrete industry recognised the need to enable UK design professionals
to use Eurocode 2, Design of concrete structures, quickly efficiently and with confidence.
Supported by government, consultants and relevant industry bodies, the Concrete Industry
Eurocode 2 Group (CIEG) was formed in 1999 and this group has provided the guidance for a
coordinated and collaborative approach to the introduction of Eurocode 2.
As a result, a range of resources is being developed and made available through The Concrete
Centre (see www.eurocode2.info). One of those resources, Concise Eurocode 2, published in
2006, is targeted at structural engineers designing concrete framed buildings. Whilst there are
many similarities in the design of buildings and bridges, there are also significant differences
and hence Eurocode 2 has a distinct part for the design of bridges. This publication is based
on the style of Concise Eurocode 2, but has been completely revised and rewritten to suit the
requirements of Eurocode 2, Part 2 and the current design practices for concrete bridge design.
Relevant extracts have been incorporated from Precast Eurocode 2: Design manual published
by British Precast, which is a similar document for designers of precast concrete. The authors
are grateful for the permission granted by British Precast.
Acknowledgements
The Concrete Centre would to thank Neil Loudon and Hideo Takano, both of the Highways
Agency, for their support and comments in producing this document. We would also like to
thank Steve Denton of Parsons Brinckerhoff, Chris Hendy of Atkins and Paul White of Halcrow
for their helpful comments. Thanks are also due to Gillian Bond, Sally Huish and the design
team at Michael Burbridge Ltd for their work on the production.
The copyright of British Standards extracts reproduced in this document is held by the British
Standards Institution (BSI). Extracts have been reproduced with BSI’s permission under the
terms of Licence No: 2009RM0003. No other use of this material is permitted. This publication
is not intended to be a replacement for the standard and may not reflect the most up-to-date
status of the standard. British Standards can be obtained in PDF or hard copy formats from
the BSI online shop: www.bsigroup.com/Shop or by contacting BSI Customer Services for hard
copies only: Tel:+44 (0)20 8996 9001, Email: [email protected].
Published by The Concrete Centre, part of the Mineral Products Association
Riverside House, 4 Meadows Business Park, Station Approach, Blackwater, Camberley, Surrey GU17 9AB
Tel: +44 (0)1276 606800 Fax: +44 (0)1276 606801 www.concretecentre.com
Cement and Concrete Industry Publications (CCIP) are produced through an industry initiative
to publish technical guidance in support of concrete design and construction.
CCIP publications are available from the Concrete Bookshop at www.concretebookshop.com
Tel: +44 (0)7004 607777
CCIP-038
Published July 2009
ISBN 978-1-904818-82-3
Price Group P
© MPA – The Concrete Centre
All advice or information from MPA - The Concrete Centre is intended only for use in the UK by those who will evaluate
the significance and limitations of its contents and take responsibility for its use and application. No liability (including that
for negligence) for any loss resulting from such advice or information is accepted by Mineral Products Association or its
subcontractors, suppliers or advisors. Readers should note that the publications from MPA - The Concrete Centre are subject to
revision from time to time and should therefore ensure that they are in possession of the latest version.
Printed by Michael Burbridge Ltd, Maidenhead, UK.
i
Symbols iv
1 Introduction 1
1.1 Scope 2
2 Basis of design 3
2.1 General 3
2.2 Basicrequirements 3
2.3 Limitstatedesign 4
2.4 Assumptions 9
2.5 Foundationdesign 10
3 Materials 11
3.1 Concrete 11
3.2 Steelreinforcement 13
3.3 Prestressingsteel 14
4 Durability and cover 17
4.1 General 17
4.2 Coverforbond,c
min,b
18
4.3 Coverfordurability,c
min,dur
18
4.4 Chemicalattack 22
4.5
Dc
dev
andotherallowances 23
5 Structural analysis 25
5.1 General 25
5.2 Idealisationofthestructure 25
5.3 Methodsofanalysis 27
5.4 Loading 29
5.5 Geometricalimperfections 29
5.6 Designmomentsincolumns 31
5.7 Corbels 36
5.8 Lateralinstabilityofslenderbeams 38
6 Bending and axial force 39
6.1 Assumptions 39
7 Shear 41
7.1 General 41
7.2 Resistanceofmembersnotrequiringshearreinforcement 41
7.3 Resistanceofmembersrequiringshearreinforcement 44
Contents
ConciseEurocode2forBridges
ii
8 Punching shear 50
8.1 General 50
8.2 Appliedshearstress 50
8.3 Controlperimeters 54
8.4 Punchingshearresistancewithoutshearreinforcement 55
8.5 Punchingshearresistancewithshearreinforcement 56
8.6 Punchingshearresistanceadjacenttocolumns 56
8.7 Controlperimeterwhereshearreinforcementisnolongerrequired,u
out
56
8.8 Distributionofshearreinforcement 57
8.9 Punchingshearresistanceoffoundationbases 58
9 Torsion 59
9.1 General 59
9.2 Torsionalresistances 59
9.3 Combinedtorsionandshear 61
10 Strut-and-tie models, bearing zones and partially loaded areas 62
10.1 Designwithstrut-and-tiemodels 62
10.2 Partiallyloadedareas 65
10.3 Bearingzonesofbridges 66
11 Prestressed members and structures 67
11.1 General 67
11.2 BrittleFracture 67
11.3 Prestressingforceduringtensioning 69
12 Fatigue 72
12.1 Verificationconditions 72
12.2 Internalforcesandstressesforfatigueverification 72
12.3 Verificationofconcreteundercompressionorshear 73
12.4 Limitingstressrangeforreinforcementundertension 74
13 Serviceability 76
13.1 General 76
13.2 StressLimitation 76
13.3 Calculationofcrackwidths 76
13.4 Controlofcracking 79
13.5 Minimumreinforcementareasofmainbars 80
13.6 Controlofdeflection 83
14 Detailing – general requirements 85
14.1 General 85
14.2 Spacingofbars 85
14.3 Mandrelsizesforbentbars 85
14.4 Anchorageofbars 86
14.5 Ultimatebondstress 88
14.6 AnchorageoftendonsatULS 89
14.7 Anchorageoftendonsattransferofprestress 90
14.8 Laps 90
iii
15 Detailing – particular requirements 94
15.1 General 94
15.2 Beams 94
15.3 One-wayandtwo-wayspanningslabs 98
15.4 Flatslabs 98
15.5 Columns 100
15.6 Walls 101
15.7 Pilecaps 102
15.8 Boredpiles 103
15.9 Requirementsforvoidedslabs 103
15.10 Prestressing 104
15.11 Connections 105
15.12 Bearings 106
16 Design for the execution stages 109
17 Design aids 110
17.1 Designforbending 110
17.2 Designforbeamshear 112
17.3 Designforpunchingshear 114
17.4 Designforaxialloadandbending 115
18 References 122
iv
Symbols and abbreviations used in this publication
Symbol Definition
IxI Absolutevalueofx
1/ Curvatureataparticularsection
Cross-sectionalarea;Accidentalaction
 Variablesusedinthedeterminationofl
lim
c
Cross-sectionalareaofconcrete
c,eff
Effectiveareaofconcreteintension
ct
Areaofconcreteinthatpartofthesectionthatiscalculatedtobeintensionjustbefore
theformationofthefirstcrack
d
Designvalueofanaccidentalaction
k
Areaenclosedbythecentrelinesofconnectingwallsincludingtheinnerhollowarea
(torsion)
p
Areaofprestressingtendonortendons
p
'
Areaofprestressingtendonswithin
c,eff
s
Cross-sectionalareaofreinforcement
s,min
Minimumcross-sectionalareaofreinforcement
s,prov
Areaofsteelprovided
s,req
Areaofsteelrequired
s1
Areaofreinforcingsteelinlayer1
s2
Areaofcompressionsteel(inlayer2)
sl
Areaofthetensilereinforcementextendingatleast
bd
+beyondthesectionconsidered
sM
(
sN
) Totalareaofreinforcementrequiredinsymmetrical,rectangularcolumnstoresistmoment
(axialload)usingsimplifiedcalculationmethod
st
Cross-sectionalareaoftransversesteel(atlaps)
sw
Cross-sectionalareaofshearreinforcement
sw
Areaofpunchingshearreinforcementinoneperimeteraroundthecolumn
sw,min
Minimumcross-sectionalareaofshearreinforcement
sw,min
Minimumareaofpunchingshearreinforcementinoneperimeteraroundthecolumn
Distance,allowanceatsupports
 Geometricdata
D Deviationforgeometricaldata
Anexponent(inconsideringbiaxialbendingofcolumns)
Projectionofthefootingfromthefaceofthecolumnorwall
b
Halfthecentre-to-centrespacingofbars(perpendiculartotheplaneofthebend)
l
Distancebywhichthelocationwhereabarisnolongerrequiredforbendingmomentis
displacedtoallowfortheforcesfromthetrussmodelforshear.(‘Shift’distanceforcurtailment)

v
Distancebetweenbearingsorfaceofsupportandfaceofload
1
,
1
Dimensionsofthecontrolperimeteraroundanelongatedsupport(punchingshear)
Overallwidthofacross-section,orflangewidthinaT-orL-beam
0
Widthofthebottomflangeofthesection
e
Effectivewidthofaflatslab(adjacenttoperimetercolumn)
eff
Effectivewidthofaflange
eq
(
eq
) Equivalentwidth(height)ofcolumn=()forrectangularsections
min
MinimumwidthofwebonT-,I-orL-beams
t
Meanwidthofthetensionzone.ForaT-beamwiththeflangeincompression,onlythe
widthofthewebistakenintoaccount
v
Symbol Definition
w
WidthofthewebonT-,I-orL-beams.Minimumwidthbetweentensionandcompression
chords
y
,
z
Dimensionsofthecontrolperimeter(punchingshear)
D Permitteddeviationfrom
nom
(BSEN13760)
D
,dev
Allowancemadeindesignfordeviation
min
Minimumcover(duetotherequirementsforbond,
min,b
ordurability
min,dur
)
nom
Nominalcover(minimumcoverplusallowancefordeviations)
y
,
x
Columndimensionsinplan
1
,
2
Dimensionsofarectangularcolumn.Foredgecolumns,
1
ismeasuredperpendicularto
thefreeedge(punchingshear)
Diameterofacircularcolumn;Diameterofmandrel;Diameter
Ed
Fatiguedamagefactor
Effectivedepthtotensionsteel
2
Effectivedepthtocompressionsteel
c
Effectivedepthofconcreteincompression
eff
Effectivedepthoftheslabtakenastheaverageoftheeffectivedepthsintwoorthogonal
directions(punchingshear)
g
Largestmaximumaggregatesize
 Ashortlengthofaperimeter(punchingshear)
Effectofaction;Elasticmodulus
c
,
c(t)
Tangentmodulusofelasticityofnormalweightconcreteatastressofs
c
=0andattime,
,days
c,eff
Effectivemodulusofelasticityofconcrete
cd
Designvalueofmodulusofelasticityofconcrete
cm
Secantmodulusofelasticityofconcrete
d
Designvalueoftheeffectofactions
 Bendingstiffness
p
Designvalueofelasticityofprestressingsteel
s
Designvalueofmodulusofelasticityofreinforcingsteel
Exp. Expression
EQU Staticequilibrium
Eccentricity
2
Deflection(usedinassessing
2
inslendercolumns)
i
Eccentricityduetoimperfections
par
Eccentricityparalleltotheslabedgeresultingfromamomentaboutanaxisperpendicular
totheslabedge(punchingshear)
y
,
z
Eccentricity,
Ed
/
Ed
alongyandzaxesrespectively(punchingshear)
Action
bt
Tensileforceinthebaratthestartofthebendcausedbyultimateloads
c
(
s
) Forceinconcrete(steel)
cd
Designvalueoftheconcretecompressionforceinthedirectionofthelongitudinal
memberaxis
cr
Absolutevalueofthetensileforcewithintheflangeimmediatelypriortocrackingdueto
thecrackingmomentcalculatedwith
ct,eff
d
Designvalueofanaction
E
Tensileforceinreinforcementtobeanchored
Ed
Compressiveforce,designvalueofsupportreaction
k
Characteristicvalueofanaction
Symbols and abbreviations used in this publication
vi
Symbol Definition
rep
Representativeaction(=c
k
wherec=factortoconvertcharacteristictorepresentative
action)
Rs
Resistingtensileforceinsteel
s
Tensileforceinthebar
td
Designvalueofthetensileforceinlongitudinalreinforcement
D
td
Additionaltensileforceinlongitudinalreinforcementduetothetrussshearmodel
wd
Designshearstrengthofweld,designvalueoftheforceinstirrupsincorbels
Wk
Characteristicvalueofwindforce(AnnexA2,BSEN1990)
 Frequency
bd
Ultimatebondstress
c
Compressivestrengthofconcrete
cd
Designvalueofconcretecompressivestrength
cd,fat
Designfatiguestrengthofconcrete
cd,pl
Designcompressivestrengthofplainconcrete
ck
Characteristiccompressivecylinderstrengthofconcreteat28days
ck
(
0
) Characteristicconcretecompressivestrengthattimeofloading
ck,cube
Characteristiccompressivecubestrengthofconcreteat28days
cm
Meanvalueofconcretecylindercompressivestrength
ct,d
Designtensilestrengthofconcrete(a
ct
ct,k
/g
C
)
ct,eff
Meantensilestrengthofconcreteeffectiveatthetimecracksmaybefirstexpectedto
occur.
ct,eff
=
ctm
attheappropriateage
ct,k
Characteristicaxialtensilestrengthofconcrete
ctb
Tensilestrengthpriortocrackinginbiaxialstateofstress
ctm
Meanvalueofaxialtensilestrengthofconcrete
ctx
Appropriatetensilestrengthforevaluationofcrackingbendingmoment
ctk,0.05
5%fractilevalueofaxialtensilestrengthofconcrete
ctk,0.95
95%fractilevalueofaxialtensilestrengthofconcrete
cvd
Concretedesignstrengthinshearandcompression(plainconcrete)
p
Tensilestrengthofprestressingsteel
p0.1
0.1%proof-stressofprestressingsteel
p0.1k
Characteristic0.1%proof-stressofprestressingsteel
p0.2k
Characteristic0.2%proof-stressofprestressingsteel
pk
Characteristictensilestrengthofprestressingsteel
sc
CompressivestressincompressionreinforcementatULS
t
Tensilestrengthofreinforcement
t,k
Characteristictensilestrengthofreinforcement
y
Yieldstrengthofreinforcement
yd
Designyieldstrengthoflongitudinalreinforcement,
sl
yk
Characteristicyieldstrengthofreinforcement
ywd
Designyieldstrengthoftheshearreinforcement
ywd,ef
Effectivedesignstrengthofpunchingshearreinforcement
ywk
Characteristicyieldstrengthofshearreinforcement
k
Characteristicvalueofapermanentaction
k
Characteristicvalueofapermanentactionperunitlengthorarea
i
Horizontalactionappliedatalevel
Overalldepthofacross-section;Height
vii
Symbol Definition
0
Notionalsizeofcross-section
f
Depthoffooting;Thicknessofflange
H
Verticalheightofadroporcolumnheadbelowsoffitofaslab(punchingshear)
s
Depthofslab
Secondmomentofareaofconcretesection
Radiusofgyration
Creepfunction
Ed
/
2
ck
.Ameasureoftherelativecompressivestressinamemberinflexure
Factortoaccountforstructuralsystem(deflection)
 Valueofabovewhichcompressionreinforcementisrequired
c
Factorforcrackingandcreepeffects
r
Correctionfactorforcurvaturedependingonaxialload
s
Factorforreinforcementcontribution
h Factorfortakingaccountofcreep
Coefficientorfactor
Unintentionalangulardisplacementforinternaltendons
c
Coefficientallowingforthenatureofthestressdistributionwithinthesectionimmediately
priortocrackingandforthechangeoftheleverarmasaresultofcracking(minimumareas)
t
Factorincrackwidthcalculationswhichdependsonthedurationofloading
Clearheightofcolumnbetweenendrestraints
Heightofthestructureinmetres
(or) Length;Span
0
Effectivelength(ofcolumns)
0
Distancebetweenpointsofzeromoment
0
Designlaplength
bd
Designanchoragelength
b,eq
Equivalentanchoragelength
b,min
Minimumanchoragelength
b,rqd
Basicanchoragelength
eff
Effectivespan
H
Horizontaldistancefromcolumnfacetoedgeofadroporcolumnheadbelowsoffitofa
slab(punchingshear)
n
Cleardistancebetweenthefacesofsupports
s
Floortoceilingheight
x
,
y
Spansofatwo-wayslabinthexandydirections
Bendingmoment.Momentfromfirstorderanalysis
 Momentresistanceofasinglyreinforcedsection(abovewhichcompressionreinforcement
isrequired)
0,Eqp
Firstorderbendingmomentinquasi-permanentloadcombination(SLS)
01
,
02
FirstorderendmomentsatULSallowancesforimperfections
0Ed
Equivalentfirstordermomentincludingtheeffectofimperfections(ataboutmidheight)
2
Nominalsecondordermomentinslendercolumns
Ed
Designvalueoftheappliedinternalbendingmoment
Edy
,
Edz
Designmomentintherespectivedirection
freq
Appliedbendingmomentduetofrequentcombination
Rdy
,
Rdz
Momentresistanceintherespectivedirection
viii
Symbol Definition
Rd,max
Maximumtransversemomentresistance
rep
Crackingbendingmoment
Numberofverticalmemberscontributingtoaneffect
Mass;Slabcomponents
Axialforce
NA NationalAnnex
a
,
b
Longitudinalforcescontributingto
i
Ed
Designvalueofaxialforce(tensionorcompression)atULS
NDP NationallyDeterminedParameter(s)aspublishedinacountry’sNationalAnnex
AxialstressatULS
Ultimateaction(load)perunitlength(orarea)
Platecomponents
Numberofbars
b
Numberofbarsinthebundle
Prestressingforce
0
Initialforceattheactiveendofthetendonimmediatelyafterstressing
c
Characteristicconstructionload
fat
Characteristicfatigueload
k
Characteristicvalueofavariableaction
k1
(
ki
) Characteristicvalueofaleadingvariableaction(Characteristicvalueofanaccompanying
variableaction)
Sn,k
Characteristicvalueofsnowload
k
Characteristicvalueofavariableactionperunitlengthorarea
ud
Maximumvalueofcombinationreachedinnon-linearanalysis
Resistance
 Verticalbearingresistanceperunitarea(foundations)
d
Designvalueoftheresistancetoanaction
 Relativehumidity
Radius;Correctingfactorforprestress
cont
Thedistancefromthecentroidofacolumntothecontrolsectionoutsidethecolumnhead
inf,
sup
Allowanceinserviceabilityandfatiguecalculationsforpossiblevariationsinprestress
m
RatiooffirstorderendmomentsincolumnsatULS
Internalforcesandmoments;Firstmomentofarea
S,N,R Cementtypes
SLS Serviceabilitylimitstate(s)–correspondingtoconditionsbeyondwhichspecifiedservice
requirementsarenolongermet
Spacingofthestirrups;Spacingbetweencracks
r
Radialspacingofperimetersofshearreinforcement
r,max
Maximumfinalcrackspacing
t
Tangentialspacingshearreinforcementalongperimetersofshearreinforcement
Torsionalmoment;Tensileforce
Ed
Designvalueoftheappliedtorsionalmoment
k
Characteristicvalueofthermalactions
Rd
Designtorsionalresistancemoment
Rd,max
Maximumdesigntorsionalresistancemomentresistance
Thickness;Timebeingconsidered;Breadthofsupport;Timeaftertensioning
ix
Symbol Definition
0
Theageofconcreteatthetimeofloading
0,T
Temperatureadjustedageofconcreteatloadingindays
ef,i
Effectivewallthickness(torsion)
inf
Thicknessofthebottomflangeofthesection
ULS Ultimatelimitstate(s)–associatedwithcollapseorotherformsofstructuralfailure
Perimeterofconcretecross-section,havingarea
c
Perimeterofthatpartwhichisexposedtodrying
Circumferenceofouteredgeofeffectivecross-section(torsion)
Componentofthedisplacementofapoint
0
Perimeteradjacenttocolumns(punchingshear)
1
Basiccontrolperimeter,(at2fromfaceofload)(punchingshear)
1*
Reducedcontrolperimeteratperimetercolumns(at2fromfaceofload)(punchingshear)
i
Lengthofthecontrolperimeterunderconsideration(punchingshear)
k
Perimeterofthearea
k
(torsion)
out
Perimeteratwhichshearreinforcementisnolongerrequired
Shearforce
Ed
Designvalueoftheappliedshearforce
Ed,red
Appliedshearforcereducedbytheforceduetosoilpressurelessselfweightofbase
(punchingshear,foundations)
Rd,c
Shearresistanceofamemberwithoutshearreinforcement
Rd,max
Shearresistanceofamemberlimitedbythecrushingofcompressionstruts
Rd,s
Shearresistanceofamembergovernedbytheyieldingofshearreinforcement
Transverseshearorcomponentofthedisplacementofapoint
Ed
Punchingshearstress
Ed
Shearstressforsectionsshearreinforcement(=
Ed
/
w
)
Ed,z
Shearstressforsectionsshearreinforcement(=
Ed
/
w
=
Ed
/
w
0.9)
Rd,c
Designshearresistanceofconcretewithoutshearreinforcementexpressedasastress
Rd,cs
Designpunchingshearresistanceofconcreteshearreinforcementexpressedasa
stress(punchingshear)
Rd,max
Resistanceofconcretestrutsexpressedasastress
1
Factorcorrespondingtoadistributionofshear(punchingshear)
Componentofthedisplacementofapoint
k
Crackwidth
max
Limitingcalculatedcrackwidth
 Advisorylimitofpercentageofcoupledtendonsatasection
X0,XA,XC, Concreteexposureclasses
XD,XF,XS
Neutralaxisdepth
Distanceofthesectionbeingconsideredfromthecentrelineofthesupport
 Co-ordinates;Planesunderconsideration
c
Depthofthecompressionzone
u
Depthoftheneutralaxisattheultimatelimitstateafterredistribution
Leverarmofinternalforces
cp
Distancebetweencentreofgravityofconcretesectionandtendons
s
Leverarmforprestress
a Angle;Angleofshearlinkstothelongitudinalaxis;Ratio
a Longtermeffectscoefficient
x
Symbol Definition
a Ratiobetweenprincipalstresses
a Deformationparameter
a
1
,a
2
,a
3
Factorsdealingwithanchorageandlapsofbars
a
4
,a
5
,a
6
a
1
,a
2
,a
3
Factorsusedincreepcalculations
a
cc
(a
ct
) Acoefficienttakingintoaccountlongtermeffectsofcompressive(tensile)loadandthe
wayloadisapplied
a
cw
Coefficienttakingaccountofthestateofstressinthecompressionchord
a
e
Effectivemodularratio
a
h
Reductionfactorfory
b Angle;Ratio;Coefficient
b Factordealingwitheccentricity(punchingshear)
b(
cm
) Factortoallowfortheeffectofconcretestrengthonthenotionalcreepcoefficient
b
H
Coefficentdependingontherelativehumidityandthenotionalmembersize
b(
0
) Factortoallowfortheeffectofconcreteageatloadingonthenotionalcreepcoefficient
b(,
0
) Coefficienttodescribethedevelopmentofcreepwithtimeafterloading
g Partialfactor
g
A
Partialfactorforaccidentalactions,
g
C
Partialfactorforconcrete
g
C,fat
Partialfactorforfatigueofconcrete
g
F
Partialfactorforactions,
g
F,fat
Partialfactorforfatigueactions
g
f
Partialfactorforactionswithouttakingaccountofmodeluncertainties
g
g
Partialfactorforpermanentactionswithouttakingaccountofmodeluncertainties
g
G
Partialfactorforpermanentactions,
g
M
Partialfactorforamaterialproperty,takingaccountofuncertaintiesinthematerial
propertyitself,ingeometricdeviationandinthedesignmodelused
g
P
Partialfactorforactionsassociatedwithprestressing,
g
Q
Partialfactorforvariableactions,
g
S
Partialfactorforreinforcingsteelorprestressingsteel
g
S,fat
Partialfactorforreinforcingorprestressingsteelunderfatigueloading
g
SH
Partialfactorforshrinkage
d Ratiooftheredistributedmomenttotheelasticbendingmoment.
e
c
Compressivestraininconcrete
e
c1
Compressivestrainintheconcreteatthepeakstress
c
e
c2
Compressivestrainlimitinconcreteforconcreteinpureaxialcompressionorstrainin
concreteatreachingmaximumstrengthassuminguseoftheparabolic-rectangular
relationship
e
c3
Compressivestrainlimitinconcreteforconcreteinpureaxialcompressionorstrainin
concreteatreachingmaximumstrengthassuminguseofthebilinearstress-strain
relationship
e
ca
Autogenousshrinkagestrain
e
cc
Creepstrain
e
cd
Dryingshrinkagestrain
e
cm
Meanstraininconcretebetweencracks
e
cs
Totalshrinkagestrain
e
cu
Ultimatecompressivestrainintheconcrete
e
cu2
Ultimatecompressivestrainlimitinconcretewhichisnotfullyinpureaxialcompression
assuminguseoftheparabolic-rectangularstress-strainrelationship(numericallye
cu2
=e
cu3
)
xi
Symbol Definition
e
cu3
Ultimatecompressivestrainlimitinconcretewhichisnotfullyinpureaxialcompression
assuminguseofthebilinearstress-strainrelationship
e
p(0)
Initialstraininprestressingsteel
De
p
Changeinstraininprestressingsteel
e
s
Straininreinforcingsteel
e
sm
Meanstraininreinforcement
e
u
Strainofreinforcementorprestressingsteelatmaximumload
e
ud
Designlimitforstrainforreinforcingsteelintension=
0.9e
uk
e
uk
Characteristicstrainofreinforcement(orprestressingsteel)atmaximumload
e
y
Reinforcementyieldstrain
n Factordefiningeffectivestrength(=1for≤C50/60)
n
1
Coefficientforbondconditions
n
2
Coefficientforbardiameter
n
p1
Coefficientthattakesintoaccountthetypeoftendonandthebondsituationatrelease
y
Angle;Angleofcompressionstruts(shear)
y
fat
Inclinationofcompressivestruts
y
i
Inclinationusedtorepresentimperfections
l Slendernessratio
l Damageequivalentfactorsinfatigue
l Factordefiningtheheightofthecompressionzone(=0.8for≤C50/60)
l
lim
Limitingslendernessratio(ofcolumns)
m Coefficientoffrictionbetweenthetendonsandtheirducts
m Characteristicvalueofthetensilestrengthofprestressingsteel
v Poisson'sratio
v
1
Strengthreductionfactorforconcretecrackedinshear
j Creepredistributionfunction
j Bondstrengthratio
j
1
Adjustedareaofbondstrength
r Requiredtensionreinforcementratio.Assume
s
/
r Ovendrydensityofconcreteinkg/m
3
r' Reinforcementratioforrequiredcompressionreinforcement,
s2
/
r
0
Referencereinforcementratio
ck
0.5
x10
–3
r
1
Percentageofreinforcementlappedwithin0.65
0
fromthecentrelineofthelapbeing
considered
r
1000
Valueofrelaxationloss(in%)at1000hoursaftertensioningandatameantemperatureof20°C
r
l
Reinforcementratioforlongitudinalreinforcement
r
w
Reinforcementratioforshearreinforcement
s
c
Compressivestressintheconcrete
s
cp
Compressivestressintheconcretefromaxialloadorprestressing
s
cu
Compressivestressintheconcreteattheultimatecompressivestraine
cu
s
gd
Designvalueofthegroundpressure
s
pi
Theabsolutevalueofinitialprestress
s
pm0
Theabsolutevalueofinitialprestressduringpost-tensioning
s
Rd,max
Designstrengthofconcretestrut
s
s
StressinreinforcementatSLS
s
s
Absolutevalueofthemaximumstresspermittedinthereinforcementimmediatelyafter
theformationofthecrack
xii
Symbol Definition
s
sc
(s
st
) Stressincompression(andtension)reinforcement
s
sd
Designstressinthebarattheultimatelimitstate
s
sr
Stressinthetensionreinforcementcalculatedonthebasisofacrackedsectionunderthe
loadingconditionscausingfirstcracking
t Torsionalshearstress
F DynamicfactoraccordingtoBSEN1991-2
h
0
Notionalcreepcoefficient
h(,
0
) Finalvalueofcreepcoefficient
h
ef
Effectivecreepfactor
h
fat
Damageequivalentimpactfactorinfatigue
h
nl
(,
0
) Non-linearnotionalcreepcoefficient
h
p
Equivalentdiameteroftendon
h(,
0
) Creepcoefficient,definingcreepbetweentimesand
0
,relatedtoelasticdeformationat28days
h
RH
Factortoallowfortheeffectofrelativehumidityonthenotionalcreepcoefficient
f Bardiameter;Diameterofprestressingduct
f
eq
Equivalentbardiameter
f
m
Mandreldiameter
f
n
Equivalentdiameterofabundleofreinforcingbars
X Ageingcoefficient
c Factorsdefiningrepresentativevaluesofvariableactions
c
0
Combinationvalueofavariableaction(e.g.usedwhenconsideringULS)
c
1
Frequentvalueofavariableaction(e.g.usedwhenconsideringwhethersectionwillhave
crackedornot)
c
2
Quasi-permanentvalueofavariableaction(e.g.usedwhenconsideringdeformation)
w Mechanicalreinforcementratio=
s
yd
/
c
cd
≤1
1
Introduction
1
Introduction
BSEN1992-1-1(Eurocode2:Part1-1
[
1
]
)setsoutgeneralrules
for the design of concrete structures and rules for the design of buildings. BS EN 1992-2
(Eurocode 2 -Part 2Concrete bridges- Designand detailing rules)
[
2
]
providesadditional or
amendedguidancetoPart1-1forbridgestructures.
TheaimofthisistodistilfromallrelevantpartsofBSEN1992and
theUKNationalAnnexes materialthatwillbecommonlyusedinthedesignofnormalbridge
structures. Eachcountry can publish non-contradictory,complementary information, and for
concretebridgedesign,PD6687,Part2
[
3
]
givesusefulguidance.Materialfromthisdocumentis
alsoincludedwhereappropriate,andpresentedonapaleyellowbackgroundtodistinguishit
fromthemaintext.
As far as possible, the Eurocode clauses are repeated verbatim.One ofthe objectives is to
embed the UK NationalAnnex values into the document for ease of use. Due to the way
Nationally Determined Parameters (NDPs) are introduced in the Eurocodes it has been
necessaryinsomeplacestomodifythetextforclarityofreading.Ithasnotbeentheintention
tomodifythemeaningofthetextandclearlyifthereisanydoubtastothemeaningthenthe
originalEurocodeversionshouldbeadopted.
Further,someoftheoriginaltexthasbeenmodifiedtoreduceitslength,whilekeepingthesame
meaning.Inthiscasethetexthasbeengivenagreybackgroundtodrawthereadersattention
tothefactthatthetextisnotstrictlyfromtheCode.Likewiseothertext,derivedformulae,
tablesandillustrationsthatareprovidedtoassistthedesignersbutthatarenottakendirectly
fromtheoriginalhavebeengivenagreybackground.Asbefore,itisintendedtoconveythe
originalmeaningandwhereanydoubtexiststhemeaningofEurocode2shouldbeadopted.
TheNDPs arerecognitionthat each Member Stateof theEU isresponsible fordetermining
matters such as safety and current practice andallow individualcountries to set their own
values.Asnotedabove,theUKvalueshavebeenadoptedthroughout,buthavebeenhighlighted
withagreenbackgroundsothatitiscleartothereaderwhatNDPvaluehasbeenused.
Guide to presentation
Greyshadedtext,
tablesandfigures
ModifiedEurocode2textandadditionaltext,derivedformulae,
tablesandillustrationsnot fromEurocode2
Yellowshadedtext,
tablesandfigures
AdditionaltextfromPD6687
[6]
orPD6687-2
[3]
BS EN 1992-1-1
6.4.4
Relevantcodeandclausesorfigurenumbers
BS EN 1992-1-1
NA
FromtherelevantUKNationalAnnex
BS EN 1992-1-1
6.4.4 & NA
FrombothEurocode2-1-1andUKNationalAnnex
Section 5.2
Relevantpartsofthispublication
1.0
NationallyDeterminedParameter.UKvalueshavebeenused
throughout
For ease of reference, this guide is repeated on the inside back cover.
2
Scope
Thispublicationisintendedtocoverthedesignofatypicalbridge;thereareparticulartypesof
bridgessuchassuspensionbridgesandsegmentalbridgesthatshouldnotbedesignedwithout
referencetotheCodeitself.Itshouldalsobenotedthatnoteverymethodpresentedinthe
Codeisgivenhere.Generally,thesimplestandmoreconservativemethodshavebeenincluded
andthereforethereadermayfindtherearebenefitstobegainedbyusingothermethodsand
shouldconsulttheCodeontheseoccasions.
Thispublicationdoesnotcoverthemethodofdesigningconcreteelementsusingmembrane
rules.Membraneelementsmaybeusedforthedesignoftwo-dimensionalconcreteelements
subject to a combination of internal forces evaluated by means of a linear finite element
analysis.ThereadershouldrefertoBSEN1992-2AnnexLLinconjunctionwithAnnexFand
Cl. 6.109 for detailed guidance. For the design or verification of shell elements subject to
bendingalone (i.e.withzeromembrane forces)the approachesgiven byWoodArmer
[4]
and
Denton&Burgoyne
[5]
maygenerallybeused.
1.1
3
Basisofdesign
Basis of design
General
BSEN1992-1-1
[
1
]
andBSEN1992-2
[
2
]
shouldbeusedinconjunctionwithBSEN1990:

[
7
]
,which:
Establishesprinciplesandrequirementsforthesafety,serviceabilityanddurabilityof
structures.
Describesthebasisfortheirdesignandverification.
Givesguidelinesforrelatedaspectsofstructuralreliability.
Basic requirements
General
Astructureshouldbedesignedandexecuted(constructed)insuchawaythatitwill,duringits
intendedlife,withappropriatedegreesofreliabilityandinaneconomicalway:
Sustainallactionsandinfluenceslikelytooccurduringexecutionanduse.
Meetthespecifiedserviceabilityrequirementsforastructureorastructuralmember.
Itshouldbedesignedtohaveadequatestructuralresistance,serviceabilityanddurability.
Astructureshouldbedesignedandexecutedinsuchawaythatitwillnotbedamagedbyevents
suchasexplosion,impactandtheconsequencesofhumanerrors,toanextentdisproportionate
totheoriginalcause.
Avoidance of damage
Potentialdamageshouldbeavoidedorlimitedbyappropriatechoiceofoneormoreofthe
following:
Avoiding,eliminatingorreducingthehazardstowhichthestructurecanbesubjected.
Selectingastructuralformwhichhaslowsensitivitytothehazardsconsidered.
Selectingastructuralformanddesignthatcansurviveadequatelytheaccidentalremoval
ofanindividualstructuralmemberoralimitedpartofthestructureortheoccurrenceof
localiseddamage.
Avoidingasfaraspossiblestructuralsystemsthatcancollapsewithoutwarning.
Tyingthestructuralmemberstogether.
Limit states principles
BSEN1990impliesthatthedesignshouldbeverifiedusinglimitstatesprinciples.
Anindicativevalueof120yearsisgivenintheUKNationalAnnexforthedesignworking
lifeofbridges.ItcangenerallybeassumedthattheguidancegiveninBS8500
[
8
]
foratleast
a100-year'intendedworkinglife'willbeappropriateforan'indicativedesignworkinglife'
of120years.
BS EN 1990
2.1(1), (2) & (4)
BS EN 1990
1.1.1(1)
BS EN 1992-1-1
1.1.1(3)
BS EN 1990
2.1(5)
BS EN 1990
3.1(1)
BS EN 1990
2.3 & NA
2
2.1
2.2
2.2.1
2.2.2
2.2.3
4
Limit state design
Limit states are states beyond which the structure no longer fulfils the relevant
designcriteria:
Ultimatelimitstates(ULS)areassociatedwithcollapseorotherformsofstructural
failure.
Serviceabilitylimitstates(SLS)correspondtoconditionsbeyondwhichspecifiedservice
requirementsarenolongermet.
Limitstatesshouldbeverifiedinallrelevantdesignsituationsselected,takingintoaccount
thecircumstancesunderwhichthestructureisrequiredtofulfilitsfunction.
Design situations
Normally,innon-seismiczones,thefollowingdesignsituationsshouldbeconsidered:
Persistentsituationswhichrefertotheconditionsofnormaluse.
Transientsituationswhichrefertotemporaryconditions,suchasduringexecutionorrepair.
Accidentalsituationswhichrefertoexceptionalconditionsapplicabletothestructureorto
itsexposuree.g.fire,explosion,impactortheconsequencesoflocalisedfailure.
Actions
Actionsrefertoasetofforces(loads)appliedtothestructure(directaction),ortoasetof
imposeddeformationsoraccelerationscaused,forexample,bytemperaturechanges,moisture
variation,unevensettlementorearthquakes(indirectaction).
Permanentactionsrefertoactionsforwhichthevariationinmagnitudewithtimeis
negligible.
Variableactionsareactionsforwhichthevariationinmagnitudewithtimeisnot
negligible.
Accidentalactionsareactionsofshortdurationbutofsignificantmagnitudethatare
unlikelytooccuronagivenstructureduringthedesignworkinglife.
Thecharacteristicvalue,
k
,ofanactionisitsmainrepresentativevalueandshallbespecifiedby:
Ameanvalue
–generallyusedforpermanentactions.
Anuppervalue
withanintendedprobabilityofnotbeingexceeded
orlowervalue
withanintendedprobabilityofbeingachieved–normallyusedforvariableactionswith
knownstatisticaldistributions,suchaswindorsnow.
Anominalvalue
usedforsomevariableandaccidentalactions.
ThevaluesofactionsgiveninthevariouspartsofBSEN1991:
[
9
]
are
takenascharacteristicvalues.
Verification
Verification,usingthepartialfactormethod,isdetailedinBSEN1990
[
4
]
.Inthismethoditis
verifiedthat,inallrelevantdesignsituations,norelevantlimitstateisexceededwhendesign
valuesforactionsandresistancesareusedinthedesignmodels.
BS EN 1990
3.1 & 3.4
BS EN 1990
3.2
BS EN 1990
1.5.3.1
BS EN 1990
1.5.3.3
BS EN 1990
1.5.3.4
BS EN 1990
1.5.3.5
BS EN 1990
4.1.2(1)
BS EN 1990
BS EN 1991
2.3
2.3.1
2.3.2
2.3.3
5
BasisofdesignBasisofdesign
Design values of actions
Thedesignvalue,
d
,ofanaction,,canbeexpressedingeneraltermsas
d
=g
F
c
k
where
g
F
=partialfactorfortheactionwhichtakesaccountofthepossibilityofunfavourable
deviationsoftheactionvaluesfromtherepresentativevalues.
c =afactorfortheaction
c canhavethevalue1.0,c
0
orc
1
orc
2
whichisusedtoobtainthecharacteristic,
combination,frequentandquasi-permanentvaluesrespectively.Itadjuststhevalue
oftheactiontoaccountforthejointprobabilityoftheactionsoccurringsimultaneously.
SeeTables2.1to2.3whicharederivedfromBSEN1990anditsNationalAnnex
[
7a
]
.
k
= characteristicvalueofanaction.
Table 2.1
Values of
c factors for road bridges
Action Symbol c
0
c
1
c
2
Traffic loads (see
BS EN 1991-2,
table 4.4)
gr1a
a
TS 0.75 0.75 0
UDL
0.75 0.75 0
Pedestrianandcycle-trackloads
b
0.40 0.40 0
gr1b
a
Singleaxle 0 0.75 0
gr2 Horizontalforces
0 0 0
gr3 Pedestrianloads
0 0.40 0
gr4 Crowdloading
0 0.75 0
gr5
c
VerticalforcesfromSVandSOVVehicles 0 1.0 0
Wind forces

Persistentdesignsituations
0.50 0.20 0

Duringexecution
0.80 0

Duringexecution 1.0 0
Thermal actions
0.60
d
0.60 0.50
Snow loads


(duringexecution) 0.80
Construction loads
1.0 1.0
Key
a Thevaluesof
c
0
,c
1
andc
2
forgr1aandgr1baregivenforroadtrafficcorrespondingtoadjusting
factorsa
Qi
,a
qi
,a
qr
andb
Q
=1
b Thevalueofthepedestrianandcycle-trackload,giveninTable4.4aofEN1991-2,isa'reduced'value
accompanyingthecharacteristicvalueofLM1andshouldnotbefactoredagainby
c
1
.However,when
gr1aiscombinedwithleadingnon-trafficactions,thisvalueshouldbefactoredbyc
0
c InaccordancewithBSEN1991-2Cl.4.5.2,thefrequentvalueofgr5doesnotneedtobeconsidered.
d The
c
0
valueforthermalactionsmayinmostcasesbereducedto0forultimatelimitstatesEQU,STRand
GEO
Table 2.2
Values of
c factors for footbridges
Action Symbol c
0
c
1
c
2
Traffic loads
gr1
0.4 0.4 0
fwk
0 0 0
gr2
0 0 0
Wind forces
Wk
0.3 0.2 0
Thermal actions
k
0.6
a
0.6 0.5
Snow loads

Sn,k
(duringexecution)
0.8 – 0
Construction loads
c
1.0 – 1.0
Key
a The
c
0
valueforthermalactionsmayinmostcasesbereducedto0forultimatelimitstatesEQU,STR
andGEO
BS EN 1990 NA
table NA. A.2.1
BS EN 1990 NA
table NA. A.2.2
2.3.4
BS EN 1990
6.3.1
6
Table 2.3
Values of
c factors for railway bridges
Actions c
0
c
1
c
2
a
Individual
components of
traffic actions
b
LM71 0.80
c
0
SW/0
0.80
c
0
SW/2
0 1.00 0
Unloadedtrain
1.00
HSLM
1.00 1.00 0
Trackingandbraking
Centrifugalforces
Interactionforcesduetodeformationunderverticaltrafficloads
Individualcomponentsoftraffic
actionsindesignsituationswherethe
trafficloadsareconsideredasasingle
(multi-directional)leadingactionand
notasgroupsofloadsshouldusethe
samevaluesofcfactorsasthose
adoptedfortheassociatedvertical
loads
Nosingforces
1.00 0.80 0
Non-publicfootpathsloads
0.80 0.50 0
Realtrains
1.00 1.00 0
Horizontalearthpressureduetotrafficloadsurcharge
0.80
c
0
Aerodynamiceffects
0.80 0.50 0
Main traffic actions
(groups of loads)
gr11(LM71+SW/0) Max.vertical1withmax.longitudinal
0.80 0.80 0
gr12(LM71+SW/0) Max.vertical2withmax.transverse
gr13(Braking/traction) Max.longitudinal
gr14(Centrifugal/nosing) Max.lateral
gr15(Unloadedtrain) Lateralstabilitywith'unloadedtrain'
gr16(SW/2) SW/2withmax.longitudinal
gr17(SW/2) SW/2withmax.transverse
gr21(LM71+SW/0) Max.vertical1withmax.longitudinal
0.80 0.70 0
gr22(LM71+SW/0) Max.vertical2withmax.transverse
gr23(Braking/traction) Max.longitudinal
gr24(Centrifugal/nosing) Max.lateral
gr26(SW/2) SW/2withmax.longitudinal
gr27(SW/2) SW/2withmax.transverse
gr31(LM71+SW/0) Additionalloadcases
0.80 0.60 0
Other operating
actions
Aerodynamiceffects
0.80 0.50 0
Generalmaintenanceloadingfornon-publicfootpaths
0.80 0.50 0
Wind forces
d

0.75 0.50 0

1.00 0 0
Thermal actions
e
0.60 0.60 0.50
Snow loads


(duringexecution) 0.80 0
Construction loads
1.00 1.00
Key
a Ifdeformationisbeingconsideredforpersistentandtransientdesignsituations,
c
2
shouldbetakenequalto1.00forrailtrafficactions.
Forseismicdesignsituations,seeTableNAA2.5ofBSEN1990NA
b Minimumcoexistantfavourableverticalloadwithindividualcomponentsofrailtrafficactions(e.g.centrifugal,tractionorbraking)is
0.5LM71,etc.
c
0.8
if1trackonlyisloaded
0.7
if2tracksaresimultaneouslyloaded
0.6
if3ormoretracksaresimultaneouslyloaded
d Whenwindforcesactsimultaneouslywithtrafficactions,thewindforce
c
0
Wk
shouldbetakenasnogreaterthan
W
(seeBSEN1991-1-4).SeeA2.2.4(4)ofBSEN1990
e SeeBSEN1991-1-5
BS EN 1990
table A.2.3
7
BasisofdesignBasisofdesign
Combinations of actions
Ultimate limit states
Thefollowingultimatelimitstatesshallbeverifiedasrelevant:
EQU Lossofstaticequilibriumofthestructureoranypartofitconsideredasarigidbody.
STR Internalfailureorexcessivedeformationofthestructureorstructuralmembers.
GEO Failureorexcessivedeformationofthestructurewherethestrengthsofsoilorrockare
significantinprovidingresistance.
FAT Fatiguefailureofthestructureorstructuralmembers.
ThepartialfactorsandcombinationsofactionsfortheselimitstatesaregiveninTables2.4
to2.7.
Table 2.4
Recommended partial factors
Action EQU (Set A) STR/GEO (Set B) STR/GEO (Set C)
Permanent actions
g
G,sup
g
G,inf
g
G,sup
g
G,inf
g
G,sup
g
G,inf
Concrete self-weight
1.05 0.95 1.35 0.95 1.00 1.00
Steel self-weight
1.05 0.95 1.20 0.95 1.00 1.00
Superimposed dead
a
1.05 0.95 1.20 0.95 1.00 1.00
Road surfacing
a
1.05 0.95 1.20 0.95 1.00 1.00
Weight of soil
1.05 0.95 1.35 0.95 1.00 1.00
Self-weight of other
materials listed in BS EN
1991-1-1, tables A.1-A.6
1.05 0.95 1.35 0.95 1.00 1.00
Creep and shrinkage
1.20 0 1.00 0
Settlement (linear
structural analysis)
1.20 0 1.00 0
Settlement (non-linear
structural analysis)
1.35 0 1.00 0
Variable actions (
g
Q
) Unfavourable Favourable Unfavourable Favourable Unfavourable Favourable
Road traffic actions
(gr1a, gr1b, gr2, gr5, gr6)
1.35 0 1.35 0 1.15 0
Pedestrian actions
(gr3, gr4)
1.35 0 1.35 0 1.15 0
Rail traffic actions
(LM71, SW/0, HSLM)
1.45 0 1.45 0 1.25 0
Rail traffic actions (SW/2
and other load models
representing controlled
exceptional traffic)
1.40 0 1.40 0 1.20 0
Rail traffic actions
(real trains)
1.70 0 1.70 0 1.45 0
Wind actions
1.70 0 1.70 0 1.45 0
Thermal actions
1.55 0 1.55 0 1.30 0
Key
a SeeTableNA.1ofBSEN1991-1-1
[9]
forguidanceonthicknessesforballast,waterproofing,surfacesandothercoatings.
Note
Fordesignvaluesforself-weightofwater,groundwaterpressureandearthpressuresrefertoBSEN1997-1.
BS EN 1990
6.4.1
2.3.5
BS EN 1990 tables
NA.A.2.4(A), (B) & (C)
8
Table 2.7
Combinations of fatigue actions
Action Permanent actions Prestress Leading variable
action
Accompanying
variable actions
Fatigue
action
Favourable Unfavourable
Non-cyclic
k,j,inf
k,j,sup
c
1,1
k,1
c
2,i
k,i
Cyclic
k,j,inf
k,j,sup
c
1,1
k,1
c
2,i
k,i
fat
Serviceability limit states
ThecombinationsofactionsfortheserviceabilitylimitstatearegiveninTable2.8.
Table 2.8
Combinations of actions for the serviceability limit state
Combination Permanent actions Prestress Variable actions
Favourable Unfavourable
Leading Others
Characteristic
k,j,sup
k,j,inf
k,1
c
0,i
k,i
Frequent
k,j,sup
k,j,inf
c
1,1
k,1
c
2,i
k,i
Quasi-permanent
k,j,sup
k,j,inf
c
2,1
k,1
c
2,i
k,i
Actions to consider
Thermaleffects,differentialsettlements/movements,creepandshrinkageshouldbetakeninto
accountwhencheckingserviceabilitylimitstates.
Thermaleffects,differentialsettlements/movements,creepandshrinkageshouldbeconsidered
forultimatelimitstatesonlywheretheyaresignificant(e.g.fatigueconditions,intheverification
ofstabilitywheresecondordereffectsareofimportance,etc.).Inothercasestheyneednotbe
considered,providedthattheductilityandrotationcapacityoftheelementsaresufficient.
Wherethermaleffectsaretakenintoaccounttheyshouldbeconsideredasvariableactionsand
appliedwithapartialfactorandcfactor,whichcanbedeterminedfromBSEN1990AnnexA2.
2.3.6
Table 2.5
Combinations of actions for EQU, STR and GEO limit states
Persistent and
transient design
situation
Permanent actions Prestress Leading variable
action
Accompanying
variable actions
Unfavourable Favourable
Exp. (6.10)
g
G,sup
kj,sup
g
G,inf
kj,inf
g
P
g
,1
k,1
g
,i
c
0,i
k,i
Note
ForpartialfactorsseeTable2.4(exceptseeTable2.9forg
P
)
Table 2.6
Combinations for accidental situations
Accidental
design
situation
Permanent actions Prestress Accidental
action
Accompanying variable actions
Unfavourable Favourable Main Others
Exp. (6.11a/b)
k,j,sup
k,j,inf
d
c
1,1
k,1
c
2,i
k,i
BS EN 1992-1-1
2.3.1.2(3)
BS EN 1990
table A2.5
BS EN 1992-1-1
6.8.3
BS EN 1990
table A2.6
BS EN 1992-1-1
2.3.1.2, 2.3.1.3
& 2.3.2.2
BS EN 1990
tables NA.A.2.4(A),
(B) & (C)
9
Basisofdesign
Differentialsettlements/movementsofthestructureduetosoilsubsidenceshouldbeclassified
asapermanentaction,
set
whichisintroducedassuchincombinationsofactions.Apartial
safetyfactorforsettlementeffectsshouldbeapplied.
When creep is taken into account its design effects should be evaluated under the quasi-
permanentcombinationofactionsirrespectiveofthedesignsituationconsideredi.e.persistent,
transientoraccidental.Inmostcasestheeffectsofcreepmaybeevaluatedunderpermanent
loadsandthemeanvalueofprestress.
Thedesignvaluesforvehicleimpactsonsupportingstructuresandsubstructuresaregivenin
BSEN1991-1-1
[9]
section4.3.Thedeisgnvaluesforvehicleimpactsonparapetsaregivenin
BSEN1991-2
[9]
section4.8.
AppropriatevaluesforpartialactionsaregiveninTable2.9
Table 2.9
Values for partial factors applied to actions
Action Ultimate limit state Servicability limit state
STR/GEO EQU FAT Favourable Unfavourable
Favourable Unfavourable Favourable Unfavourable
Shrinkage
g
SH
=0 g
SH
=1.0
Prestress
effects
g
P,fav
=0.9 g
P,unfav
=1.1 g
P,fav
=0.9 g
P,unfav
=1.2
inf
=1.0
sup
=1.0
Fatigue
g
F,fat
=1.0
Material properties
Material properties are specified in terms of their characteristic values, which in general
correspond to a defined fractile of an assumed statistical distribution of the property
considered(usuallythelower5%fractile).
Thevaluesofg
C
andg
S
,partialfactorsformaterials,areindicatedinTable2.10.
Table 2.10
Partial factors for materials
Design situation
g
C
– concrete g
S
– reinforcing steel g
S
– prestressing steel
ULS – Persistent and transient
1.50 1.15 1.15
Accidental
1.20 1.00 1.00
Fatigue
1.50 1.15 1.15
SLS
1.00 1.00 1.00
Assumptions
InadditiontotheassumptionsinBSEN1990,itisassumedthat:
Structuresaredesignedbyappropriatelyqualifiedandexperiencedpersonnel.
Adequatesupervisionandqualitycontrolisprovided.
Constructioniscarriedoutbypersonnelhavingtheappropriateskillandexperience.
MaterialsandproductswillbeusedasspecifiedinEurocode2orintherelevantmaterialor
productspecifications.
Thestructurewillbeadequatelymaintainedandwillbeusedinaccordancewiththe
designbrief.
TherequirementsforexecutionandworkmanshipgiveninENV13670
[10]
arecompliedwith.
2.3.7
2.4
BS EN 1992-1-1
2.3.1.3(1) & (4)
BS EN 1992-1-1
2.3.2.2(3)
BS EN 1992-1-1
2.4.2.4(1) & NA
BS EN 1992-1-1
table 2.1 N & NA
BS EN 1992-1-1
1.3
10
2.5
AtthetimeofwritingBSEN13670
[11]
isexpectedtobepublishedinlate2009,andwill
replace ENV 13670.Oncepublished itis anticipated that standardspecifications will be
updatedtorefertoit.Intheinterimexistingspecificationsshouldbeadapted.
Foundation design
ThedesignofconcretefoundationsissubjecttoEurocode7
[
12
]
forthegeotechnicalaspects
andtoEurocode2forthestructuralconcretedesign.Furtherguidanceonthegeotechnical
designcanbefoundinPD6694-1
[13]
.
Eurocode7iswiderangingandprovidesalltherequirementsforgeotechnicaldesign.Itstates
thatnolimitstatee.g.equilibrium,stability,strengthorserviceability,asdefinedbyBSEN1990,
shallbeexceeded.TherequirementsforULSandSLSdesignmaybeaccomplishedbyusing,
inanappropriatemanner,thefollowingaloneorincombination:
Calculations.
Prescriptivemeasures.
Testing.
Observationalmethods.
The foundation design and the derivation of design resistance are covered by the
GeotechnicalDesign Report.Forsimplestructures,this reportcanbecombined withthe
ground investigation report but it is still a distinct requirement. Both the ULS and SLS
conditionsmustbemetbutthe definitionoftheSLScriteriaisnotpossiblewithout the
liaisonwiththebridgedesignerandafullEurocode7compatibledesigncannotbecarried
outbyapartyinisolationfromtherestofthestructuredesignteam.
BS EN 1997
2.1(4)
BS EN 1997
2.4.6.4
11
Materials
BS EN 1992-1-1
3.1.2(1)
BS EN 1992-1-1
4.4.1.2(5) & NA
BS EN 1992-1-1
table 3.1
BS EN 1992-2
3.1.2 (102) & NA
BS EN 1992-1-1
3.1.2 (2) & NA
BS EN 1992-1-1
3.1.6(1) & NA
BS EN 1992-1-1
3.1.3(4)
BS EN 1992-1-1
3.1.3(5)
3
3.1
3.1.1
Materials
Concrete
Strength and other properties
The compressive strength is denoted by concrete strength classes which relate to the
characteristic(5%)cylinderstrength
ck
,orthecubestrength
ck,cube
,inaccordancewithBSEN
206-1
[
14
]
.
IntheUK,BS8500
[
8
]
complementsBSEN206-1andtheguidancegivenintheformershould
befollowed.
ConcretestrengthclassesandpropertiesareshowninTable 3.1.Inthenotationusedfor
compressivestrengthclass,‘C’referstonormalweightconcrete,thefirstnumberrefersto
thecylinderstrength
ck
andthesecondtocubestrength
ck,cube
.
Thestrengthclasses(C)inBSEN1992-2aredenotedbythecharacteristiccylinderstrength
ck
determinedat 28dayswith a minimumvalueofC25/30 anda maximumvalueofC70/85.
TheshearstrengthofconcreteclasseshigherthanC50/60shouldbedeterminedbytestsor
limitedtothatofC50/60.
Thevalueofthedesigncompressivestrengthofconcrete,
cd
,isdefinedas:
cd
=a
cc
ck
/g
C
where

ck
=characteristiccompressivecylinderstrengthofconcreteat28days
g
C
=partialfactorforconcrete(SeeTable2.9)
a
cc
=acoefficienttakingaccountoflongtermeffectsonthecompressivestrengthandof
unfavourableeffectsresultingfromthewaytheloadisapplied.
IntheUKa
cc
iseither
1.0or0.85dependingonthesituation.Thecorrectvaluesareusedintheappropriate
clausesbelow.Generallyitis1.0forshearand0.85inothercircumstances
Thevalueofconcretedesigntensilestrength
ctd
isdefinedas:
ctd
=
1.0
ctk,0.05
/g
C
where

ctk,0.05
=5%fractilevalueofaxialtensilestrengthofconcrete
Poisson'sratiomaybetakenequalto0.2foruncrackedconcreteand0forcrackedconcrete.
Unlessmoreaccurateinformationisavailable,thelinearcoefficientofthermalexpansionmay
betakenequalto10x10
–6
K
–1
.
Table 3.1
Concrete strength classes and properties
Property Strength class (MPa)
C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 C55/67 C60/75 C70/85 C28/35
a
C32/40
a
f
ck
25 30 35 40 45 50 55 60 70 28 32
f
ck, cube
30 37 45 50 55 60 67 75 85 35 40
f
cm
33 38 43 48 53 58 63 68 78 36 40
f
ctm
2.6 2.9 3.2 3.5 3.8 4.1
4.2
4.4
4.6
2.8 3.0
f
ctk,0.05
1.8 2.0 2.2 2.5 2.7 2.9 3.0
3.1 3.2
1.9 2.1
f
ctk,0.95
3.3 3.8 4.2 4.6 4.9 5.3
5.5 5.7 6.0
3.6 3.9
E
cm,
(GPa)
31 33 34 35 36 37 38 39 41 32 33
Key
aDeriveddata
BS EN 1992-1-1
table 3.1
12
BS EN 1992-1-1
3.1.4(2)
BS EN 1992-1-1
B.1(1)
BS EN 1992-1-1
B.1(2)
Creep
Thecreepcoefficient,h(
0
)isrelatedto
c
,thetangentmodulus,whichmaybetakenas
1.05
cm
.
Thecreepcoefficienth(
0
)maybeobtainedfromFigure3.1ofBSEN1992-1-1,orcalculatedfrom:
h(
0
)=h
0
b
c
(
0
)
where
h
0
=notionalcreepcoefficientandmaybeestimatedfrom:
= h
RH
b(
cm
)b (
0
)
where
h
RH
= factortoallowfortheeffectofrelativehumidityonthenotionalcreep
coefficient:
=
1+
1–/100
for
cm
≤35MPa
0.1
0
1/3
=
[
1+
a
1
(1–/100)
]
a
2
for
cm
>35MPa
0.1
0
1/3
 =relativehumidityoftheambientenvironmentin%
b (
cm
) =factortoallowfortheeffectofconcretestrengthonthenotionalcreep
coefficient
=16.8/
cm
0.5
cm
 =meancompressivestrengthofconcreteinMPaattheageof28days
b(
0
) =factortoallowfortheeffectofconcreteageatloadingonthenotionalcreep
coefficient
=1/(0.1+
0
0.20
)

0
 =notionalsizeofthememberinmm
=2
c
/

c
=cross-sectionalarea
=perimeterofthememberincontactwiththeatmosphere
b
c
(,
0
)=coefficienttodescribethedevelopmentofcreepwithtimeafter
loading
=[(
0
)/(b
H
+
0
)]
0.3
where
=ageofconcreteindaysatthemomentconsidered
0
=ageofconcreteatloadingindays

0
 =non-adjusteddurationofloadingindays
b
H
=coefficient depending on the relative humidity ( in %) and the
notionalmembersize(
0
inmm)
=1.5[1+(0.012)
18
]
0
+250≤1500for
cm
≤35MPa
=1.5[1+(0.012)
18
]
0
+250a
3
≤1500a
3
for
cm
>35MPa
a
1
=(35/
cm
)
0.7
a
2
 =(35/
cm
)
0.2
a
3
 =(35/
cm
)
0.5
Theeffectoftypeofcementonthecreepcoefficientofconcretemaybetakeninto
accountbymodifyingtheageofloading
0
accordingtothefollowingExpression:
0
=
0,T
(9/(2+
0,T
1.2
)+1)
a
0.5
where
0,T
 =temperatureadjustedageofconcreteatloadingindays(seebelow)
a =powerwhichdependsontypeofcement
=-1forcementClassS(cementClassCEM32.5N)
=0forcementClassN(cementClasses32.5R&CEM42.5N)
=1forcementClassR(cementClassesCEM42.5R,CEM52.5N&CEM52.5R)
3.1.2
13
Materials
CementclassescanbespecifiedusingBSEN197-1
[15]
.WherethecementClassisnotknown,
generally Class R may be assumed.Where the ground granulated blastfurnace slag (ggbs)
contentexceeds35%ortheflyashcontentexceeds20%ofthecementcombination,ClassN
maybeassumed.Whereggbsexceeds65%orpfaexceeds35%,ClassSmaybeassumed.
Theeffectofelevatedorreducedtemperatureswithintherange080°Conthematurityof
concretemaybetakenintoaccountbyadjustingtheconcreteageaccordingtothefollowing
Expression:
T
=Se
(4000/[273+(
D
i
)]–13.65)
D
=1
where

T
=temperature-adjustedconcreteagewhichreplacesinthecorrespondingequations
(D
i
) =temperaturein°CduringthetimeperiodD
i
D
i
=numberofdayswhereatemperatureprevails
The mean coefficient of variation of the above predicted creep data, deduced from a
computeriseddatabankoflaboratorytestresults,isoftheorderof20%.
Thecreepdeformationofconcretee
cc
(,
0
)attime=foraconstantcompressivestresss
c
appliedattheconcreteage
0
,isgivenby:
e
cc
(,
0
)=h(,
0
)(s
c
/
c
)
Whenthecompressivestressofconcreteatanage
0
exceedsthevalue0.45
ck
(
0
)thencreep
non-linearityshouldbeconsidered.Suchahighstresscanoccurasaresultofpretensioning,e.g.
in precast concrete members at tendon level. In such cases the non-linear notional creep
coefficientshouldbeobtainedasfollows:
h
nl
(,
0
)=h(,
0
)exp[1.5(
s
–0.45)]
where
h
nl
(,
0
)=non-linearnotionalcreepcoefficient,whichreplacesh(,
0
)
s
 =stress–strengthratios
c
/
ck
(
0
)
s
c
 =compressivestress
ck
(
0
) =characteristicconcretecompressivestrengthatthetimeofloading
Shrinkage
Thetotalshrinkagestrainiscomposedoftwocomponents,thedryingshrinkagestrainandthe
autogenousshrinkagestrain.Thedryingshrinkagestraindevelopsslowly,sinceitisafunctionof
the migration ofthe waterthrough thehardened concrete.The autogenous shrinkage strain
developsduringhardeningoftheconcrete:themajorpartthereforedevelopsintheearlydays
aftercasting.Autogenousshrinkageisalinearfunctionoftheconcretestrength.Itshouldbe
consideredspecificallywhennewconcreteiscastagainsthardenedconcrete.
Hencethevaluesofthetotalshrinkagestrainfollowfrom:
e
cs
=e
cd
+e
ca
where
e
cs
=totalshrinkagestrain
e
cd
=dryingshrinkagestrain(seeTable3.2)
e
ca
=autogenousshrinkagestrain(seeTable3.2)
Steel reinforcement
ThepropertiesofsteelreinforcementtoBS4449:2005
[16]
areshowninTable3.3.ThisBritish
StandardcomplementsBSEN10080
[17]
andAnnexCofBSEN1992-1-1.
AnnexCallowsforastrengthrangebetween400and600MPa.BS4449:2005adopts500MPa.
BS EN 1992-1-1
3.1.4(3)
BS EN 1992-1-1
3.1.4(4)
BS EN 1992-1-1
3.1.4(6)
BS EN 1992-1-1
3.2
Materials
BS EN 1992-1-1
B.1(3)
3.1.3
3.2
14
Table 3.2
Long-term (70-year) shrinkage strains
Concrete strength at
28 days (
f
ck
)
Strain due to drying
shrinkage (x 10
3
)
Strain due to autogenous
shrinkage (x 10
3
)
Total shrinkage
strains (x 10
3
)
20
0.517 0.025 0.542
25
0.489 0.038 0.527
30
0.463 0.050 0.513
35
0.438 0.063 0.501
40
0.415 0.075 0.490
45
0.393 0.088 0.481
50
0.372 0.100 0.472
60
0.333 0.125 0.458
70
0.298 0.150 0.448
Notes
1ThevaluesshownassumeClassRcement(ClassNandClassSwillhavelowervalues).
2Thedryingshrinkagevaluesassumeanotionalmembersize,
0
,of150mm.For
0
of300mm
multiplyvaluesby0.81andfor
0
of500mmorgreater,multiplyvaluesby0.75.
Table 3.3
Properties of reinforcement
Property Class
A B C
Characteristic yield strength f
yk
or f
0.2k
(MPa) 500 500 500
Minimum value of k = (f
t
/f
y
)
k
≥1.05 ≥1.08 ≥1.15<1.35
Characteristic strain at maximum force
e
uk
(%) ≥2.5 ≥5.0 ≥7.5
Note
TablederivedfromBSEN1992-1-1AnnexC,BS4449:2005andBSEN10080.Thenomenclatureused
inBS4449:2005differsfromthatusedinAnnexCandusedhere.
ClassBorClassCreinforcementshouldbeused.Forsteelfabricreinforcement,ClassAmayalso
beusedprovideditisnottakenintoaccountintheevaluationoftheultimateresistance.
Prestressing steel
Typicalprestressingstrandpropertiesareshown inTable3.4.The manufacturer’stechnical
datasheetsshouldbereferredfordetailedinformation.
PropertiesofprestressingsteelsshouldbeinaccordancewithEN10138.However,untilthis
standardispublishedBS5896
[18]
maybeused.
The0.1%proofstress(
p0.1k
)andthespecifiedvalueoftensilestrength(
pk
)areusedtodefine
thecharacteristicvaluesoftheprestressingsteels.
Thedesignvaluesfortheprestressingsteelarederivedbydividingthecharacteristicvalues
by the partial safety factor for prestressing steel g
S
. For ultimate limit state verification,
g
S
=1.15forpersistentandtransientdesignsituationsand1.0foraccidentaldesignsituations.
Themodulusofelasticity
p
canbeassumedequalto205GPaforwiresandbarsand195GPa
forstrand.
BS EN 1992-1-1
table C1
BS EN 1992-2
3.2.4 & NA
BS EN 1992-1-1
3.3.6(2) & (3)
BS EN 1992-1-1
3.3.2(1)
BS EN 1992-1-1
3.3.3(1)
3.3
15
MaterialsMaterials
Table 3.4
Dimensions and properties of low relaxation strand and wire for prestressed concrete
Type of
strand
Nominal
diameter
(mm)
Nominal
tensile
strength (MPa)
Steel area
(mm²)
Nominal
mass (g/m)
Characteristic
breaking load
(kN)
Characteristic
0.1% proof
load (kN)
Characteristic
load at 1%
elongation (kN)
7 wire
standard
15.2 1860 139 1090 259 220 228
15.2 1670 139 1090 232 197 204
12.5 1860 93 730 173 147 152
12.5 1770 93 730 164 139 144
11.0 1770 71 557
125
106 110
9.3 1860 52 408 97 82 85
9.3 1770 52 408 92 78 81
7 wire super 15.7 1860 150 1180 279 237 246
15.7 1770 150 1180 265 225 233
12.9 1860 100 785 186 158 163
11.3 1860 75 590 139 118 122
9.6 1860 55 432 102 87 90
8.0 1860 38 298 70 59 61
7 wire drawn 18.0 1770 223 1750 380 323 334
15.2 1820 165 1295 300 255 264
12.7 1860 112 890 209 178 184
Relaxation of prestressing steel
BSEN1992-1-1definesthreeclassesofrelaxation.
Class1:ordinarywireandstrand
Class2:lowrelaxationwireandstrand
Class3:hotrolledandprocessedbars
Thedesigncalculationofthelossesduetorelaxationoftheprestressingsteelshouldbebased
on the lossat 1000 hr (r
1000
) after tensioningat a mean temperature of20°C and initial
prestressof70%(0.7
pk
).Thevaluesofr
1000
canbetakenfromthecertificateorassumedtobe:
Class1–8%
Class2–2.5%
Class3–4%
The relaxation loss may be obtained from manufacturer’s test certificates or they can be
calculated,baseduponthefollowingequations(seealsoTable3.5):
Class1
s
pr
t
r
1000
s
pi
D
5. 39 e
6.7m
10
–5
1000
=
0.75 (1– m)
Class2
s
pr
t
r
1000
s
pi
D
0. 66 e
9.1
m
10
–5
1000
=
0.75 (1– m)
Class3
s
pr
t
r
1000
s
pi
D
1. 98 e
8m
10
–5
1000
=
0.75 (1– m)
where
Ds
pr
=absolutevalueoftherelaxationlossesoftheprestress
s
pi
=absolutevalueoftheinitialprestress
=s
pm0
forpost-tensioning (seeSection11.3.2)
=maximumtensilestressappliedtothetendonminustheimmediatelosses
occurringduringthestressingprocessforpre-tensioning (seeSection11.3.3)
BS EN 1992-1-1
3.3.2(4)
BS EN 1992-1-1
3.3.2(5)
BS EN 1992-1-1
3.3.2(6)
BS EN 1992-1-1
3.3.2(7)
3.3.1
16
=timeaftertensioning(inhours)
 =s
pi

pk
,where
pk
isthecharacteristicvalueofthetensilestrengthofthe
prestressingsteel
r
1000
=valueofrelaxationloss(%),at1000hoursaftertensioningandatamean
temperatureof20°C
The long-term (final) values of the relaxation losses may be estimated from  = 500,000
hours.
Relaxationlossesareverysensitivetotemperatureofthesteelwhereheattreatmentisapplied
(e.g.bysteam)(seeBSEN1992-1-1Cl.10.3.2.1).Otherwisewherethetemperatureisgreater
than50°C,therelaxationlossesshouldbeverified.
Table 3.5
Relaxation losses based on using Expressions (3.28 to 3.30) in BS EN 1992-1-1
Class
r
1000
(%) μ = s
pi
/
pk
t (hours)
Ds
pr
/s
pi
%
1
8 0.80 500,000 23.3
0.76 21.5
0.72 19.8
0.68 18.2
0.64 16.8
0.60 15.5
2
2.5 0.80 6.1
0.76 5.1
0.72 4.3
0.68 3.6
0.66 3.0
0.60 2.5
3
4 0.80 12.1
0.76 10.6
0.72 9.3
0.68 8.1
0.64 7.1
0.60 6.2
Relaxationlossesaresensitivetovariationsinstresslevelsovertimeandcanthereforebe
reducedbytaking intoconsiderationofother time-dependent losses occurringwithinthe
structureatthesame time(such as creepandshrinkage).PreviousUK practiceistobase
designontherelaxationlossof1000hourswithoutconsideringtheinteractionwithcreep
andshrinkage.
BS EN 1992-1-1
3.3.2(8)
BS EN 1992-1-1
3.3.2(9)
17
Durabilityandcover
Durability and cover
General
A durable structure shall meet the requirements of serviceability, strength and stability
throughoutits designworking life, without significant loss ofutility or excessiveunforeseen
maintenance.
Inordertoachievetherequireddesignworkinglifeofthestructure,adequatemeasuresshallbe
takentoprotecteachstructuralelementagainsttherelevantenvironmentalactions.Exposure
conditionsarechemicalandphysicalconditionstowhichthestructureisexposedinadditionto
mechanicalactions.
Requirementsof durability should be considered at all stages of designand construction,
includingtheselectionofmaterials,constructiondetails,executionandqualitycontrol.
Half-jointsshouldnotbeusedinbridgesunlessthereareadequateprovisionsforinspection
andmaintenance.
Waterpenetrationorthepossibilityofleakagefromthecarriagewayinto
the inside of voided structures should be considered in the design. For concrete surfaces
protectedbywaterproofingtheexposureclassis
XC3
.
Where de-icing salt is used,all exposedconcrete surfaces within
10m
of the carriageway
horizontally or within
5m
above the carriageway should be considered as being directly
affected by de-icing salts. Top surfaces of supports under expansion joints should also be
consideredasbeingdirectlyaffectedbyde-icingsalts.Theexposureclassesforsurfacesdirectly
affectedbyde-icingslatsare
XD3
and
XF2
or
XF4
asappropriate.
Adequatecoverisrequiredtoensuresafetransmissionofbondforces(seeSection4.2)and
protectionofsteelagainstcorrosion(seeSections4.3and4.4).
The concrete cover to reinforcement is the distance from the outer surface of the
reinforcementtothenearestconcretesurface.Drawingsshouldspecifythenominalcover.As
illustrated in Figure 4.1, the nominal cover should satisfy the minimum requirements in
respectofbondanddurability,andallowforthedeviationtobeexpectedinexecution(see
Section4.5).
Figure 4.1
Determination
of cover
Nominalcover,
nom
Minimumcover,
min
(forbond,
min,b
or
durability
min,dur
)
Designallowancefor
deviation,D
dev
BS EN 1992-1-1
4.1
BS EN 1992-1-1
4.3(1), 4.2(1)
BS EN 1992-1-1
4.3(2)
BS EN 1992-1-1
4.4.1.2(1)
BS EN 1992-2
4.2(106) & NA
BS EN 1992-1-1
4.4.1.3(3)
BS EN 1992-2
4.2(104), (105)
& NA,
PD 6687-2 5.1
4
4.1
18
Cover for bond, c
min,b
Inordertotransmitbondforcessafelyandtoensureadequatecompaction,theminimumcover
shouldnotbelessthan
min,b
inTable4.1.
Table 4.1
Minimum cover, c
min,b
, requirements for bond
Reinforcement type and arrangement c
min,b
Individual bars
Diameterofbar,
f
Bundled bars
Equivalentdiameterofbars,
f
n
Post-tensioned circular ducts
Diameterofductor80mmwhicheverissmaller
Post-tensioned rectangular ducts
Smallerdimensionorhalfgreaterdimension
whicheverisgreater,butnotmorethan80mm
Pre-tensioned strand or wire
1.5timesthediameter
Pre-tensioned indented wire
2.5timesthediameter
Cover for durability, c
min,dur
Environmentalconditionsare classified accordingtoTable 4.2, whichis basedon BS8500.
Concretecompositionandminimumcoversrequiredfordurabilityindifferentenvironmental
conditionsaresetoutinTable4.3,derivedfromBS8500
[
8
]
.Thesetablesgiverecommendations
fornormalweightconcreteusingmaximumaggregatesizeof20mmforselectedexposure
classesandcovertoreinforcement.
InaccordancewithBS8500,specialattentionshouldbegiventotheconcretecomposition
and aggregates, when considering freeze/thaw attack, chemical attack or abrasion
resistance.
Table 4.2
Exposure Classes
Class Class description Informative example applicable to the United Kingdom
No risk of corrosion or attack (X0 class)
X0 Forconcretewithout
reinforcementorembedded
metalallexposuresexcept
wherethereisfreeze/thaw,
abrasionorchemicalattack.
Unreinforcedconcretesurfacesinsidestructures.Unreinforcedconcretecompletelyburiedinsoil
classedasAC–1andwithhydraulicgradientnotgreaterthan5.Unreinforcedconcretepermanently
submergedinnon-aggressivewater.Unreinforcedconcreteincyclicwetanddryconditionsnot
subjecttoabrasion,freezingorchemicalattack.
Note:Forreinforcedconcrete,useatleastXC1.
Corrosion induced by carbonation (XC classes)
a
(Where concrete containing reinforcement or other embedded metal is exposed to air and moisture)
XC1 Dryorpermanentlywet. Reinforcedandprestressedconcretesurfacesinsideenclosedstructuresexceptareasofstructures
withhighhumidity.Reinforcedandprestressedconcretesurfacespermanentlysubmergedinnon-
aggressivewater.
XC2 Wet,rarelydry. ReinforcedandprestressedconcretecompletelyburiedinsoilclassedasAC–1andwithahydraulic
gradientnotgreaterthan5.
XC3&
XC4
Moderatehumidityorcyclic
wetanddry.
Externalreinforcedandprestressedconcretesurfacesshelteredfrom,orexposedto,directrain.Reinforced
andprestressedconcretesurfacesinsidestructureswithhighhumidity(e.g.poorlyventilated,bathrooms,
kitchens).Reinforcedandprestressedconcretesurfacesexposedtoalternatewettinganddrying.Interior
concretesurfacesofpedestriansubwaysnotsubjecttode-icingsalts,voidedsuperstructuresorcellular
abutments.Reinforcedorprestressedconcretebeneathwaterproofing.
BS 8500 table A.1
4.2
4.3
BS EN 1992-1-1
table 4.2
BS EN 1992-1-1
4.4.1.2(3) & NA
BS EN 1992-1-1
4.4.1.2(5) & NA
19
Durabilityandcover
Table 4.2
Exposure Classes (continued)
Class Class description Informative example applicable to the United Kingdom
Corrosion induced by chlorides other than from sea water (XD classes)
a
(Where concrete containing reinforcement or other embedded metal is subject to contact with water containing chlorides, including
de-icing salts, from sources other than from sea water)
XD1
Moderatehumidity Concretesurfacesexposedtoairbornechlorides.Reinforcedandprestressedconcretewalland
structuresupportsmorethan10mhorizontallyfromacarriageway.Bridgedecksoffitsmorethan
5mverticallyabovethecarriageway.Partsofstructuresexposedtooccasionalorslightchloride
conditions.
XD2
Wet,rarelydry. Reinforcedandprestressedconcretesurfacestotallyimmersedinwatercontainingchlorides
b
.
Buriedhighwaystructuresmorethan1mbelowadjacentcarriageway.
XD3
Cyclicwetanddry. Reinforcedandprestressedconcretesurfacesdirectlyaffectedbyde-icingsaltsorspraycontaining
de-icingsalts(e.g.walls;abutmentsandcolumnswithin10mofthecarriageway;parapetedge
beamsandburiedstructureslessthan1mbelowcarriagewaylevel,pavementsandcarparkslabs).
Corrosion induced by chlorides from sea water (XS classes)
a
(Where concrete containing reinforcement or other embedded metal is subject to contact with chlorides from sea water or air carrying
salt originating from sea water)
XS1
Exposedtoairbornesaltbut
notindirectcontactwithsea
water.
Externalreinforcedandprestressedconcretesurfacesincoastalareas.
XS2
Permanentlysubmerged. Reinforcedandprestressedconcretecompletelysubmergedandremainingsaturated,e.g.concrete
belowmid-tidelevel
b
.
XS3
Tidal,splashandsprayzones. Reinforcedandprestressedconcretesurfacesintheuppertidalzonesandthesplashandspray
zones
c
.
Freeze/thaw attack (XF classes)
(Where concrete is exposed to significant attack from freeze/thaw cycles whilst wet)
XF1
Moderatewatersaturation
withoutde-icingagent.
Verticalconcretesurfacessuchasfacadesandcolumnsexposedtorainandfreezing.Non-vertical
concretesurfacesnothighlysaturated,butexposedtofreezingandtorainorwater.
XF2
Moderatewatersaturation
withde-icingagent.
Concretesurfacessuchaspartsofbridges,whichwouldotherwisebeclassifiedasXF1butwhichare
exposedtode-icingsaltseitherdirectlyorassprayorrun-off.
XF3
Highwatersaturationwithout
de-icingagent.
Horizontalconcretesurfaces,suchaspartsofbuildings,wherewateraccumulatesandwhichare
exposedtofreezing.Concretesurfacessubjectedtofrequentsplashingwithwaterandexposedto
freezing.
XF4
Highwatersaturationwith
de-icingagentorseawater
d
.
Horizontalconcretesurfaces,suchasroadsandpavements,exposedtofreezingandtode-icingsalts
eitherdirectlyorassprayorrun-off.Concretesurfacessubjectedtofrequentsplashingwithwater
containingde-icingagentsandexposedtofreezing.
Chemical attack (ACEC classes)
(Where concrete is exposed to chemical attack. Note: BS 8500-1 refers to ACEC classes rather than XA classes used in BS EN 206-1)
RefertoSection4.4
Key
a Themoistureconditionrelatestothatintheconcretecovertoreinforcementor
otherembeddedmetalbut,inmanycases,conditionsintheconcretecovercanbe
takenasbeingthatofthesurroundingenvironment.Thismightnotbethecaseif
thereisabarrierbetweentheconcreteanditsenvironment.
b Reinforcedandprestressedconcreteelements,whereonesurfaceisimmersedin
watercontainingchloridesandanotherisexposedtoair,arepotentiallyamore
severecondition,especiallywherethedrysideisatahighambienttemperature.
Specialistadviceshouldbesoughtwherenecessary,todevelopaspecificationthat
isappropriatetotheactualconditionslikelytobeencountered.
c ExposureXS3coversarangeofconditions.Themostextremeconditionsare
inthesprayzone.Theleastextremeisinthetidalzonewhereconditionscan
besimilartothoseinXS2.Therecommendationsgiventakeintoaccountthe
mostextremeUKconditionswithinthisclass.
d ItisnotnormallynecessarytoclassifyintheXF4exposureclassthoseparts
ofstructureslocatedintheUnitedKingdomwhichareinfrequentcontact
withthesea.
20
Table 4.3
Selected
a
recommendations for normal-weight reinforced concrete quality for combined exposure classes and cover to reinforcement
Exposure conditions Cement/
combina-
tion desig-
nations
b
Minimum strength class
c
, maximum w/c ratio, minimum cement or combination
Typical
example
Primary
Secondary
At least 50-year working life
Nominal cover to reinforcement
d
15 +Dc
dev
20 +Dc
dev
25 +Dc
dev
30 +Dc
dev
35 +Dc
dev
40 +Dc
dev
45 +Dc
dev
Internalelements
orpermanently
wetelements
XC1

All
C20/25,
0.70,240
orRC20/25
<<< <<< <<< <<< <<< <<<
Buriedconcrete
inAC–1ground
conditions
e
XC2 AC–1 All
C25/30,
0.65,260or
RC25/30
<<< <<< <<< <<<
Verticalsurface
protectedfrom
directrainfall
XC3/4
Allexcept
IVB-V
C40/50,
0.45,340
orRC40/50
C30/37,
0.55,300
orRC30/37
C28/35,
0.60,280
orRC28/35
C25/30,
0.65,260
orRC25/30
<<< <<<
Verticalsurface
exposedtorain
andfreezing
XF1
Allexcept
IVB-V
C40/50,
0.45,340
orRC40/50
C30/37,
0.55,300
orRC30/37
C28/35,
0.60,280
orRC28/35
<<< <<< <<<
Exposed
horizontal
surfaces
XF3
Allexcept
IVB-V
C40/50,0.45,
340
g
or
RC40/50XF
g
<<< <<< <<< <<< <<<
XF3(air
entrained)
Allexcept
IVB-V
C30/37,
0.55,300
g,h
C28/35,
0.60,280
g,h
orPAV2
C25/30,
0.60,280
g , h , j
orPAV1
<<< <<<
Elementssubject
toairborne
chlorides
XD1
f
XF1 All
C40/50,
0.45,360
C32/40,
0.55,320
C28/35,
0.60,300
<<< <<<
Exposedvertical
surfacesnear
coast
XS1
f
XF1
CEMI,IIA,
IIB-S,SRPC
SeeBS8500
C35/45,
0.45,360
C32/40,
0.50,340
<<<
IIB-V,IIIA
See
BS8500
C32/40,
0.45,360
C28/35,
0.50,340
C25/30,
0.55,320
IIIB
C32/40,
0.40,380
C25/30,
0.50,340
C25/30,
0.50,340
C25/30,
0.55,320
Exposedhoriz.
surfacesnear
coast
XF3or
XF4
CEMI,IIA,
IIB-S,SRPC
SeeBS8500
C40/50,
0.45,360
g
<<< <<<
Elements
submergedin
water
containing
chlorides
XD2or
XS2
f
CEMI,IIA,
IIB-S,SRPC
C40/50,
0.40,380
C32/40,
0.50,340
C28/35,
0.55,320
<<<
IIB-V,IIIA
C35/45,
0.40,380
C28/35,
0.50,340
C25/30,
0.55,320
<<<
IIIB,IVB-V
C32/40,
0.40,380
C25/30,
0.50,340
C20/25,
0.55,320
<<<
Elements
subjectto
moderatewater
saturationwith
de-icingagent
andfreezing
XD3
f
XF2
IIB-V,IIIA
C35/45,
0.40,380
C32/40,
0.45,360
CEMI,IIA,
IIB-S,SRPC
SeeBS8500
C40/50,
0.40,380
IIIB,IVB-V
C32/40,
0.40,380
C32/40
0.45,360
Elements
subjecttowater
saturationwith
de-icingagent
andfreezing
XF4
k
IIB-V,IIIA
C40/50,
0.45,380
g
C40/50,
0.45,360
g
XF4(air
entrained)
CEMI,IIA,
IIB-S,SRPC
SeeBS8500
C28/35,
0.40,380
g
IIB-V,IIIA
C28/35,
0.40,380
g,h
C28/35
0.45,360
g,h
Elementsin
tidal,splashand
sprayzones
XS3

CEMI,IIA,
IIB-S,SRPC
SeeBS8500
IIB-V,IIIA
C35/45,
0.40,380
C32/40,
0.45,360
IIIB,IVB-V
C32/40,
0.40,380
C28/35,
0.45,360
Key
aThistablecomprisesaselectionofcommonexposureclass
combinations.Requirementsforothersetsofexposureclasses,
e.g.XD2,XS2andXS3shouldbederivedfromBS8500–1:
2006,AnnexA.
bSeeTable4.4(CEMIisPortlandcement,IIAtoIVBarecement/combinations.)
cForprestressedconcretetheminimumstrengthclassshouldbeC28/35.
d
D
dev
isanallowancefordeviations.
21
Durabilityandcover
for either at least a 50-year or 100-year intended working life and 20 mm maximum aggregate size
content (kg/m
3
), and equivalent designated concrete where applicable
At least 100-year working life
Nominal cover to reinforcement
d
50 +Dc
dev
15 +Dc
dev
25 +Dc
dev
30 +Dc
dev
35 +Dc
dev
40 +Dc
dev
45 +Dc
dev
50 +Dc
dev
55 +Dc
dev
60 +Dc
dev
65 +Dc
dev
<<<
C20/25,
0.70,240
RC20/25
<<< <<< <<< <<< <<< <<< <<< <<< <<<
<<<
C25/30,
0.65,260
RC25/30
<<< <<< <<< <<< <<< <<< <<< <<<
<<<
C40/50,
0.45,340
RC40/50
C35/45,
0.50,320
RC35/45
C30/37,
0.55,300
RC30/37
C28/35,
0.60,280
RC28/35
C25/30,
0.65,260
RC25/30
<<< <<< <<<
<<<
C40/50,
0.45,340
RC40/50
C35/45,
0.50,320
RC35/45
C30/37,
0.55,300
RC30/37
C28/35,
0.60,280
RC28/35
<<< <<< <<< <<<
<<<
C40/50,
0.45,340
g
RC40/50
<<< <<< <<< <<< <<< <<< <<<
<<<
C35/45,0.50,
320
g,h
C30/37,0.55,
300
g,h
C28/35,0.60,
280
g,h
orPAV2
C25/300.60,
280
g,h,j
orPAV1
<<< <<< <<<
<<<
C45/55,
0.40,380
C40/50,
0.45,360
C35/45,
0.50,340
C32/40,
0.55,320
C28/35,
0.60,300
<<< <<< <<<
<<<
See
BS8500
C40/50,
0.40,380
C35/45,
0.45,360
<<< <<<
<<<
C35/45,
0.40,380
C32/40,
0.45,360
C28/35,
0.50,340
C25/30,
0.55,320
<<< <<< <<<
<<<
C35/45,
0.45,360
C30/37,
0.50,340
C28/35,
0.55,320
C25/30,
0.55,320
<<< <<< <<<
<<<
SeeBS8500
C40/50,
0.40,380
g
<<< <<< <<<
<<<
C35/45,
0.45,360
C32/40,
0.50,340
C28/35,
0.55,320
<<< <<< <<<
<<<
C32/40,
0.45,360
C28/35,
0.50,340
C25/30,
0.55,320
<<< <<< <<<
<<<
C28/35,
0.45,360
C25/30,
0.50,340
C20/25,
0.55,320
<<< <<< <<<
C32/40,
0.50,340
SeeBS8500
C35/45,
0.40,380
C32/40,
0.45,360
C28/35,
0.50,340
C25/30,
0.55320
C35/45,
0.45,360
SeeBS8500
C40/50,
0.40,380
C35/45,
0.45,360
C32/40,
0.50,340
C32/40,
0.40,380
C28/35,
0.45,360
C25/30,
0.50,340
<<< <<<
C40/50,
0.45,340
SeeBS8500
C40/50,
0.40,380
g
C40/50,
0.45,360
g
C40/50,
0.45,340
g
C40/50,
0.45,340
g
C28/35,
0.45,360
g
See
BS8500
C28/35,
0.40,380
g
C28/35,
0.45,360
g
C28/35,
0.50,340
g,h
SeeBS8500
C28/35,
0.40,380
g,h
C28/35,
0.45,360
g,h
C28/35,
0.50,340
g,h
C28/35,
0.55,320
g,h
C40/50,
0.40,380
SeeBS8500
C40/50,
0.40,380
C28/35,
0.50,340
SeeBS8500
C35/45,
0.40,380
C32/40,
0.45,360
C28/35,
0.50,340
C25/30,
0.55,320
C25/30,
0.50,340
C32/40,
0.40,380
C28/35,
0.45,360
C25/30,
0.50,340
<<< <<<
e Forsectionslessthan140mmthickreferto
BS8500.
f AlsoadequateforexposureclassXC3/4.
g Freeze/thawresistingaggregatesshouldbe
specified.
h Airentrainedconcreteisrequired.
j Thisoptionmaynotbesuitablefor
areassubjecttosevereabrasion.
k Notrecommendedforpavementsand
hardstandings–seeBS8500-1,A.4.3.
Notrecommended
<<< Indicatesthatconcretequalityincellto
theleftshouldnotbereduced
22
Table 4.4
Cement and combination type
a
Broad
designation
b
Composition Cement/combination types
(BS 8500)
CEM I
Portlandcement CEMI
SRPC
Sulfate-resistingPortlandcement SRPC
IIA
Portlandcementwith6–20%flyash,ground
granulatedblastfurnaceslag,limestone,or6–10%
silicafume
c
CEMII/A-L,CEMII/A-LL,CIIA-L,
CIIA-LL,CEMII/A-S,CIIA-S,CEM
II/A-V,CIIA-V,CEMII/A–D
IIB-S
Portlandcementwith21–35%groundgranulated
blastfurnaceslag
CEMII/B-S,CIIB-S
IIB-V
Portlandcementwith21–35%flyash CEMII/B-V,CIIB-V
IIB+SR
Portlandcementwith25–35%flyash CEMII/B-V+SR,CIIB-V+SR
IIIA
d, e
Portlandcementwith36–65%groundgranulated
blastfurnaceslag
CEMIII/A,CIIIA
IIIA+SR
e
Portlandcementwith36–65%groundgranulated
blastfurnaceslagwithadditionalrequirementsthat
enhancesulfateresistance
CEMIII/A+SR
f
,CIII/A+SR
f
,
CIIIA+SR
IIIB
e, g
Portlandcementwith66–80%groundgranulated
blastfurnaceslag
CEMIII/B,CIIIB
IIIB+SR
e
Portlandcementwith66–80%groundgranulated
blastfurnaceslagwithadditionalrequirementsthat
enhancesulfateresistance
CEMIII/B+SR
f
,CIIIB+SR
f
IVB-V
Portlandcementwith36–55%flyash CEMIV/B(V),CIVB
Key
a Thereareanumberofcementsandcombinationsnotlistedinthistablethatmaybespecifiedfor
certainspecialistapplications.SeeBRESpecialDigest
[19]
forthesulfate-resistingcharacteristicsof
othercementsandcombinations.
b Theuseofthesebroaddesignationsissufficientformostapplications.Whereamorelimitedrangeof
cementorcombinationstypesisrequired,selectfromthenotationsgiveninBS8500–2:2006,Table1.
c WhenIIAorIIA–Disspecified,CEMIandsilicafumemaybecombinedintheconcretemixerusing
thek-valueconcept;seeBSEN206–1:2000,Cl.5.2.5.2.3.
d WhereIIIAisspecified,IIIA+SRmaybeused.
e Inclusiveoflowearlystrengthoption(seeBSEN197–4andthe‘LclassesinBS8500–2:2006,TableA.1).
f ‘+SR’indicatesadditionalrestrictionsrelatedtosulfateresistance.SeeBS8500–2:2006,Table1,
footnoteD.
g WhereIIIBisspecified,IIIB+SRmaybeused.
Chemical attack
Whereplainorreinforcedconcreteisincontactwiththeground,furtherchecksarerequired
toachievedurability.Anaggressivechemicalenvironmentforconcreteclass(ACECclass)
shouldbeassessedforthesite.
[19]
givesguidanceontheassessmentof
theACECclassandthisisnormallycarriedoutaspartoftheinterpretivereportingfora
groundinvestigation.Knowing theACECclass,adesignchemical class (DCclass)canbe
obtainedfromTable4.5.Ingeneral,fullyburiedconcreteintheUKneednotbedesignedto
befreeze-thawresisting.
Fordesignated concretes,an appropriate foundationconcrete(FND designation)can be
selectedusingTable4.6.AnFNDconcretehasthestrengthclassofC25/30.Whereahigher
strengthisrequired,eitherforitsstrengthorwherethefoundationisclassifiedasXD2or
XD3, a designed concrete should be specified. For designed concretes, the concrete
producershouldbeadvisedoftheDC–class.
BS 8500
table A.6
4.4
23
Durabilityandcover
4.5
Dc
dev
and other allowances
Tocalculatethenominalcover,
nom
,anadditiontotheminimumcovershallbemadeindesign
to allow for thedeviation (D
dev
). In the UKtherecommended valueis
10mm.
In certain
situationstheaccepteddeviationandhenceallowanceD
dev
maybereduced:
Wherefabricationissubjectedtoaqualityassurancesystem,inwhichthemonitoring
includesmeasurementsoftheconcretecover,theallowanceindesignfordeviationD
dev
maybereduced:10mm≥D
dev
≥5mm
Whereitcanbeassuredthataveryaccuratemeasurementdeviceisusedformonitoring,
andnon-conformingmembersarerejected(e.g.precastelements),theallowanceindesign
fordeviationD
dev
maybereduced:10mm≥D
dev
≥0mm
D
dev
isrecognisedinBS8500asD.
Theminimumcoverforconcretecastonpreparedground(includingblinding)is
40mm
and
thatforconcretecastdirectlyagainstsoilis
65mm.
Forunevensurfaces(e.g.exposedaggregate)theminimumcovershouldbeincreasedbyatleast
5mm.
Table 4.5
Selection of the DC–class and the number of additional protection measures (APMs) where the
hydrostatic head of groundwater is not more than five times the section width
a, b, c, d, e
ACEC-class (aggressive
chemical environment
for concrete class)
Intended working life
At least 50 years At least 100 years
AC–1s, AC–1 DC–1 DC–1
AC–2s, AC–Z DC–2 DC–2
AC–2z DC–2z DC–2z
AC–3s DC–3 DC–3
AC–3z DC–3z DC–3z
AC–3 DC–3 RefertoBS8500
AC–4s DC–4 DC–4
AC–4z DC–4z DC–4z
AC–4 DC–4 RefertoBS8500
AC–4ms DC–4m DC4m
AC–4m DC–4m RefertoBS8500
AC–5
DC–4
f
DC–4
f
AC–5z
DC–4z
f
DC–4z/1
f
AC–5m
DC–4m
f
DC–4m
f
Key
a Wherethehydrostaticheadofgroundwaterisgreaterthanfivetimesthesectionwidth,refertoBS
8500.
b ForguidanceonprecastproductsseeSpecialDigest1
[19]
.
c ForstructuralperformanceoutsidethesevaluesrefertoBS8500.
d Forsectionwidths<140mmrefertoBS8500.
e Whereanysurfaceattackisnotacceptablee.g.withfrictionpiles,refertoBS8500.
f ThisshouldincludeAPM3(surfaceprotection),wherepracticable,asoneoftheAPMs;refertoBS
8500.
BS EN 1992-1-1
4.4.1.3(1)&(3)
& NA
BS EN 1992-1-1
4.4.1.3(4) & NA
BS EN 1992-1-1
4.4.1.2(11)
BS 8500
table A.9
24
BS EN 1992-2
4.4.1.2(114)
BS 8500
table A.1
BS EN 1992-2
4.4.1.2(115)
Table 4.6
Guidance on selecting designated concrete for reinforced concrete foundations
DC-Class Appropriate designated concrete
DC–1
RC 25/30
DC–2
FND2
DC–2z
FND2z
DC–3
FND3
DC–3z
FND3z
DC–4
FND4
DC–4z
FND4z
DC–4m
FND4m
Note
Strength class for all FND concrete is C25/30.
Bare concrete decks of road bridges, without waterproofing or surfacing, should be classified as
Abrasion Class XM2.
Where a concrete surface is subject to abrasion caused by ice or solid transportation in running
water, the cover should be increased by a minimum of 10 mm.
25
Structuralanalysis
Structural analysis
General
Thepurposeofstructuralanalysisistoestablishthedistributionofeitherinternalforcesand
momentsorstresses,strainsanddisplacementsoverthewholeorpartofastructure.Additional
localanalysisshallbecarriedoutwherenecessary.
Whendesigningabridgedeckslabofboxbeamorbeamandslabconstruction,itisnecessary
toconsider,inadditiontooverallglobaleffects,thelocaleffectsinducedinthetopslabby
wheelloads.Currentpracticeistouseelasticanalysisandoftenassumefullfixityattheslab
andwebjunctionsanduseeitherPucher’sinfluencesurfaces,Westergaard’sequations,orFE
analysis.
Idealisation of the structure
Definitions
Forbridgestructuresthefollowingcanbeapplied:
Abeamisamemberforwhichthespanisnotlessthanthreetimesitsdepth.Ifnot,itis
adeepbeam.
Aslabisamemberforwhichtheminimumpaneldimensionisnotlessthanfivetimes
theoverallthickness.
Aone-wayspanningslabhaseithertwoapproximatelyparallelunsupportededgesor,
whensupportedonfouredges,theratioofthelongertoshorterspanexceeds2.0.
Acolumnisamemberforwhichthesectiondepthdoesnotexceedfourtimesitswidth
andtheheightisatleastthreetimesthesectiondepth.Ifnot,itisawall.
Effective flange width
Theeffectivewidthofaflange,
eff
,shouldbebasedonthedistance,
0
,betweenpointsofzero
momentsasshowninFigure5.1anddefinedinFigure5.2.
eff
=
w
+
eff,1
+
eff,2
where

eff,1
=(0.2
1
+0.1
0
)but≤0.2
0
and≤
1

eff,2
=tobecalculatedinasimilarmannerto
eff,1
but
2
shouldbesubstituted
for
1
intheabove
1
2
3
0
=0.85
1
0
=0.15(
1
+
2
)
0
=0.7
2
0
=0.15
2
+
3
Figure 5.1
Elevation showing definition of l0 for calculation of flange width
BS EN 1992-1-1
5.1.1(1)
BS EN 1992-1-1
5.3.1
BS EN 1992-1-1
5.3.2.1(2)&(3)
BS EN 1992-1-1
fig. 5.2
5
5.1
5.2
5.2.1
5.2.2
26
Effective span
Theeffectivespan,
eff
,ofamembershouldbecalculatedasfollows:
eff
=
n
+
1
+
2
where

n
=cleardistancebetweenthefacesofthesupports;valuesfor
1
and
2
,ateachendof
thespan,maybedeterminedfromtheappropriate
i
valuesinFigure5.3whereisthe
widthofthesupportingelementasshown.
eff
eff,1
eff,2
w
w
1
1
2
2
Figure 5.2
Section showing effective flange width parameters
n
i
=MIN(a;a)
a) Non-continuous members b) Continuous members
i
=MIN(a;a)
eff
n
n
i
=MIN(a;a)
c) Supports considered fully restrained
d) Bearing provided
eff
i
=MIN(a;a)
e) Cantilever
eff
eff
eff
i
n
L
n
Figure 5.3
Effective span, l
eff
, for different support conditions
BS EN 1992-1-1
fig. 5.3
BS EN 1992-1-1
fig. 5.4
BS EN 1992-1-1
5.3.2.2(1)
5.2.3
27
Structuralanalysis
Methods of analysis
Ultimate limit states (ULS)
Thetypeofanalysisshouldbeappropriatetotheproblembeingconsidered.Thefollowingare
commonlyused:linearelasticanalysis,linearelasticanalysiswithlimitedredistribution,and
plasticanalysis.
Fordeterminationoftheactioneffects,linearelasticanalysismaybecarriedoutassuming:
 Uncrackedcross-sections.
Linearstress–strainrelationships.
Theuseofmeanvaluesofelasticmodulus.
Ifalinearelasticanalysiswithlimitedredistributionisundertaken,shearsandreactions
used in the design should be taken as those either prior to redistribution or after
redistribution,whicheverisgreater.
Incontinuousbeamsorslabswhich:
Arepredominantlysubjecttoflexure
Havetheratiooflengthsofadjacentspansintherangeof0.5to2.0
redistributionofbendingmomentmaybecarriedoutwithoutexplicitcheckontherotation
capacityprovidedthat:
d≥
0.44
+
1.25(0.6+0.0014/e
cu2
)
u
/ for
ck
≤50MPa
d≥
0.54
+
1.25(0.6+0.0014/e
cu2
)
u
/ for
ck
>50MPa
d≥
0.85
whereClassBandClassCreinforcementisused
where
d =theratiooftheredistributedmomenttothemomentinthelinearelasticanalysis
u
=thedepthoftheneutralaxisattheultimatelimitstateafterredistribution
=theeffectivedepthofthesection
Redistributionshouldnotbecarriedoutincircumstanceswheretherotationcapacitycannot
bedefinedwithconfidence(e.g.incurvedandorskewedbridges).
Itisrecommendedthatmomentredistributionisnotusedforsectionsdeeperthan1.2m
unlessarigorousanalysisofrotationcapacityisundertaken.
Thefollowingrulesmaybeusedforsolidconcreteslabswith
ck
≤50MPa.
d≥
0.4
+
1.0
u
/≥0.7wherethereinforcementisClassBorClassC
NoredistributionisallowedforClassAreinforcement.
Whereused,plasticanalysisshouldbebasedeitheronstatic(lowerbound)orkinematic(upper
bound) methods.Theductility of the critical sectionsshould be sufficient forthe envisaged
mechanismtobeformed.The requiredductilitymaybedeemedtobesatisfiedifallofthe
followingarefulfilled:

u
/≤0.15for
ck
≤50MPa

u
/≤0.10for
ck
≥50MPa
ReinforcementiseitherClassBorC;and
 Ratioofthemomentsatinternalsupportstothemomentsinthespanisbetween0.5and2.0.
Forsolidslabs
u
/≤0.25maybeusedwhen
ck
≤50MPa.
BS EN 1992-1-1
5.1.1(6)
BS EN 1992-1-1
5.4(2)
BS EN 1992-2
5.5(104) & NA
PD 6687-2
6.4
BS EN 1992-1-1
5.6.1(3) & (2)
BS EN 1992-2
5.6.2(102)
BS EN 1992-2
5.5(104)
PD 6687-2
6.6
BS EN 1992-2
5.5 (105)
5.3
5.3.1
28
Non-linearanalysisshouldbeundertakenusingmodelfactorsandmaterialmodels,which
giveresultsthaterronthesafeside.Typically,thismaybeachievedbyusingdesignmaterial
properties and applying design actions. However, in some situations, underestimating
stiffnessthroughtheuseofdesignpropertiescanleadtounsaferesults.Suchsituationscan
include cases where indirect actions such as imposed deformations are significant, cases
wherethe failureloadisassociatedwith a local brittlefailuremode,andcaseswherethe
effectoftensionstiffeningisunfavourable.Insuchsituations,sensitivityanalysesshouldbe
undertaken toinvestigate the effect of variations inmaterial properties, including spatial
variations,toprovideconfidencethattheresultsoftheanalysisdoerronthesafeside.
Fornon-linearanalysisthatconsidersonlydirectandflexuraleffects,referencemaybemade
toBSEN1992-2,Cl.5.8.6.Suchanalysisshouldaccountfortheeffectsoflong-termloading.
Effectsnotconsidereddirectlyintheanalysisshouldbeconsideredseparatelyinaccordance
withSections6to11.
Non-linearanalysisthatdeterminesshearandtorsionalstrengthdirectlyhasnotyetreached
astagewhereitcanbefullycodified.Particularanalysesmaybeusedwhentheyhavebeen
shownbycomparisonwithteststogivereliableresults,withtheagreementoftheNational
Authority.
Serviceability limit states (SLS)
Linearelasticanalysismaybecarriedoutassuming:
 Uncrackedcross-sections.
Linearstress–strainrelationships.
Theuseofmeanvaluesofelasticmodulus.
The moments derived from elastic analysis should not be redistributed but a gradual
evolutionofcrackingshouldbeconsidered,whichrequiresanon-linearanalysisallowingfor
theeffectofcrackingandtensionstiffening.Un-crackedglobalanalysisinaccordancewith
BS EN 1992-1-1 Cl. 5.4 (2) may always be used as a conservative alternative to such
considerations.
General note
Regardlessofthemethodofanalysisused,thefollowingapply.
Whereabeamorslabismonolithicwithitssupports,thecriticaldesignmomentatthe
supportmaybetakenasthatatthefaceofthesupport.Thedesignmomentandreaction
transferredtothesupportingelement(e.g.column,wall,etc.)shouldbegenerallytakenas
thegreateroftheelasticorredistributedvalues.Themomentatthefaceofthesupport
shouldnotbetakenaslessthan
65%
ofthefullfixedendmoment.
 Whereabeamorslabiscontinuousoverasupportwhichisconsideredtoprovideno
restrainttorotation(e.g.overwalls)andtheanalysisassumespointsupport,thedesign
supportmomentcalculatedonthebasisofaspanequaltothecentre-to-centredistance
betweensupports,maybereducedbyanamountD
Ed
asfollows:
D
Ed
=
Ed,sup
/8
where
Ed,sup
=designsupportreaction
=breadthofbearing
BS EN 1992-1-1
5.4
BS EN 1992-2
5.7 (105) & NA
5.3.2
5.3.3
BS EN 1992-1-1
5.3.2.2(3)
BS EN 1992-1-1
5.3.2.2(104)
29
Structuralanalysis
Loading
Combinations of actions
Thefollowingcombinationsofactionsshouldbeusedwhereappropriate.
Ultimate Limit State
Persistent or transient design situations:
g
G
k
g
p
g
Q,1

k,1
Sg
Q,i
c
0,i

k,i
>1
Accidental design situations:
k

d
c
1,1
k,1
Sc
2,i

k,i
>1
Note:c
2,1
maybesubstitutedforc
1,1
dependingontheaccidentaldesignsituation.
Serviceability Limit State
Characteristic combination of actions:
k

k,1
S c
0,i

k,i
>1
Tobeusedforstresslimitationcheckforconcreteandsteel.
Frequent combination of actions:
k
c
1,1
k,1
S c
2,i
k,i
>1
Tobeusedfordecompressioncheckorcrackwidthcheckforprestressedconcretewith
bondedtendons.
Quasi-permanent combination of actions:
k
S c
2,i
k,i


>1
Tobeusedforcrackwidthcheckforreinforcedconcreteandprestressedconcretewithout
bondedtendonsanddeformationcheck.
Terms
Combinationvalueofavariableaction:c
0
Frequentvalueofavariableaction:c
1

Quasi-permanentvalueofavariableaction:c
2
Load cases
Inconsideringthecombinationsofactions(seeSection6andAnnexA2ofBSEN1990)the
relevantloadcasesshallbeconsideredtoenablethecriticaldesignconditionstobeestablished
atallsections,withinthestructureorpartofthestructureconsidered.
Geometrical imperfections
General
Theunfavourableeffectsofpossibledeviationsinthegeometryofthestructureandtheposition
ofloadsshallbetakenintoaccountintheanalysisofmembersandstructures.
Imperfections shall be taken into account in ultimate limit states inpersistent andaccidental
designsituations.
BS EN 1992-1-1
5.2(1)
BS EN 1990
6.4.3
BS EN 1992-2
5.1.3
BS EN 1992-1-1
5.2(2)
5.4
5.4.1
5.5
5.5.1
30
Imperfections and global analysis of structures
Imperfectionsmayberepresentedbyaninclinationy
i
givenby:
y
1
=
(1/200)
a
h
where
a
h
= 2/
0.5
≤1.0
 = lengthorheightinmetres
Forisolatedmemberstheeffectoftheimperfectionsmayberepresentedasaneccentricityor
byatransverseforce.
Theeccentricity,
i
,givenby
i
=y
i
0
/2where
0
istheeffectivelength
Thetransverseforceisappliedinthepositionthatgivesmaximummoment.
i
=y
1

where

i
=actionappliedatthatlevel
 = axialload
 =1.0forunbracedmembers(seeFigure5.4a)
=2.0forbracedmembers(seeFigure5.4b)
Forarchbridges,theshapeofimperfectionsinthehorizontalandverticalplanesshouldbebased
ontheshapeofthefirsthorizontalandverticalbucklingmodeshaperespectively.Eachmode
shapemaybeidealisedbyasinusoidalprofile.Theamplitudeshouldbetakenas=y
1
/2,
whereisthehalfwavelength.
Thedispositionofimperfectionsusedinanalysisshouldreflectthebehaviourandfunctionof
thestructureanditselements.Theshapeofimperfectionshouldbebasedontheanticipated
modeofbucklingofthemember.Forexample,inthecaseofbridgepiers,anoveralllean
imperfectionshouldbeusedwherebucklingwillbeinaswaymode(“unbraced”conditions),
whilealocaleccentricitywithinthemembershouldbeusedwherebothendsofthemember
areheldinposition(“braced”conditions).
In using Expression (5.2) of Part 1-1 the eccentricity,
i
, derived should be taken as the
amplitude of imperfection over the half wavelength of buckling; Figure 5.5 shows the
imperfectionsuitableforapierrigidlybuiltinformomentateachend.Aleanimperfection
should however be considered in the design of the positional restraints for braced members.
FurtherguidanceandbackgroundaregiveninHendyandSmith.
[20]
b) Braced isolated members
a) Unbraced isolated members
i
i
i

0

i

0
Figure 5.4
Examples of the effects of geometric imperfections
BS EN 1992-2
5.2(105)
BS EN 1992-1-1
5.2(7)
BS EN 1992-1-1
Exp. (5.2)
BS EN 1992-2
5.2(106)
PD 6687-2
6.2
BS EN 1992-1-1
fig. 5.1a
5.5.2
31
Structuralanalysis
5.6
5.6.1
PD 6687-2
fig. 1
BS EN 1992-1-1
5.8.1
BS EN 1992-1-1
5.8.3.2(3)
i
i
0
y
I
0
  
 
i
y
I

b) Angular imperfection
a) Sinusoidal imperfection
Figure 5.5
Imperfections for pier built in at both ends
Design moments in columns
Definitions
Bracing members
Bracing members are members that contribute to the overall stability of the structure,
whereasbracedmembersdonotcontributetotheoverallstabilityofthestructure.
Effective length l
0
Forbracedmembers:
0
=0.5[(1+
1
/(0.45+
1
))(1+
2
/(0.45+
2
))]
0.5
Forunbracedmembers
0
isthelargerofeither:
0
=[1+10
1
2
/(
1
+
2
)]
0.5

or
0
=[1+
1
/(1.0+
1
)][1+
2
/(1.0+
2
)]
where
 = clearheightofthecolumnbetweentheendrestraints

1
,
2
=relativeflexibilitiesofrotationalrestraintsatends1and2respectively
Examplesofdifferentbucklingmodesandcorrespondingeffectivelengthfactorsforisolated
membersareshowninFigure5.6.PD6687-2
[3]
notesthattheeffectivelengthsshowndonot
covertypicalbridgecasesandprovidesadditionalexamples,whicharegiveninTable5.1.
BS EN 1992-1-1
5.8.3.2(2)
PD 6687-2, 6.71
32
y
y
y
a) l
0
= l b) l
0
= 2l c) l
0
= 0.7l d) l
0
= l/2 e) l
0
= l f) l/2 < l
0
< l g) l
0
> 2l
Figure 5.6
Examples of different buckling modes and corresponding effective lengths for isolated members
Slenderness ratio, l
Slendernessratiol=
0
/
where
=theradiusofgyrationoftheuncrackedconcretesection
Ignoringreinforcement:
l=3.46
0
/forrectangularsections
=4.0
0
/forcircularsections
where
=thedepthinthedirectionunderconsideration
=thediameter
Limiting slenderness ratio l
lim
The limiting slendernessratio,l
lim
, abovewhich second order effects should beconsidered,
isgivenby
l
lim
=20/
0.5
where
 = 1/(1+0.2h
ef
)(ifh
ef
isnotknownmaybetakenas0.7)
where
h
ef
= effectivecreepfactor=h(,
0
)
0Eqp
/
0Ed
h(,
0
) = finalcreepcoefficient(seeSection3.1.2)

0Eqp
= thefirstorderbendingmomentinthequasi-permanentload
combination(SLS)

0Ed
= thefirstorderbendingmomentindesignloadcombination(ULS)
 = (1+2w)
0.5
(ifwisnotknownmaybetakenas1.1)
where
w = mechanicalreinforcementratio
=(
s
/
c
)(
yd
/
cd
)
s
=totalareaoflongitudinalreinforcement
 = 1.7–
m
(If
m
isnotknown,maybetakenas0.7
where

m
=
01
/
02
,where
01
and
02
arethefirstorderendmomentsatULSwith
02
numericallylargerthan
01
.If
01
and
02
givetensiononthesame
sidethen
m
ispositive(and<1.7),seeFigure5.7

m
= 1.0forunbracedmembersandbracedmembersinwhichthefirstorder
momentsarecausedlargelybyimperfectionsortransverseloading
BS EN 1992-1-1
5.8.3.2(1)
BS EN 1992-1-1
fig. 5.7
BS EN 1992-1-1
5.8.3.1(1) & NA
BS EN 1992-1-1
5.8.4
BS EN 1992-1-1
3.1.4(4), 3.1.4(5)
33
Structuralanalysis
Table 5.1
Effective height, l
0
for columns
Case Idealized column and buckling mode Restraints Effective
height l
0
Location Position Rotation
1
l
Top Full
Full
a
0.70
Bottom Full
Full
a
2
l
Top Full None
0.85
Bottom Full
Full
a
3
l
Top Full None
1.0
Bottom Full None
4
Elastometric
bearing
b
l
Top
None
c
None
c
1.3
Bottom Full
Full
a
5
l
Top None None
1.4
Bottom Full
Full
a
6
l
Top None
Full
a
1.5
Bottom Full
Full
a
7
or
l l
Top None None
2.3
Bottom Full
Full
d
Notes
Theheightofthebearingsisnegligiblecomparedwiththatofthecolumn.
Key
a Rotationalrestraintisatleast4(
)/,where()istheflexuralrigidityofthecolumn
b Mayalsobeusedwithrollerbearingsprovidedthattherollersareheldinplacebyaneffectivemeans,suchasracks
c Lateralandrotationalrigidityofelastomericbearingsarenegligible
d Rotationalrestraintisatleast8()/l,where()istheflexuralrigidityofthecolumn
PD 6687-2
table 1
34
 =
Ed
/(
c
cd
)
where

Ed
=designvalueofaxialforce
Note:h
ef
maybetakenas0ifallthefollowingconditionsaremet:
h(,
0
) ≤2.0;
l ≤75;and
0Ed
/
Ed
 ≥,thedepthofthecross-sectionintherelevantdirection.
Figure 5.7
Values of C
for different
values of r
m
a) C = 0.7, r
m
= 1.0 b) C = 1.7, r
m
= 0 c) C = 2.7, r
m
= – 1.0
01
=
02
02
02
02
01
=–
02
0
Design bending moments
Non-slender columns
Whenl≤l
lim
i.e.whennon-slender,thedesignbendingmomentinacolumnis
Ed
=
02
where

Ed
= designmoment
02
,
01
= firstorderendmomentsatULSincludingallowancesforimperfections.
02
isnumericallylargerthan
01
.Attentionshouldbepaidtothesign
ofthebendingmoments.Iftheygivetensiononthesameside,
01
and
02
shouldhavethesamesign

02
= +
i
Ed
where
 = largestmomentfromfirstorderanalysis(elasticmomentswithout
redistribution)andignoringeffectofimperfections

Ed
= designvalueofaxialforce

i
= eccentricityduetoimperfections=y
i
0
/2
Forcolumnsinbracedsystems
i
=
0
/400(i.e.y
i
=/200formostbracedcolumns).Thedesign
eccentricityshouldbeatleast(/30)butnotlessthan20mm.
where
y = inclinationusedtorepresentimperfections

0
= effectivelengthofcolumn
 = depthofthesectionintherelevantdirection
Slender columns (nominal curvature method)
Thismethodisprimarilysuitableforisolatedmemberswithconstantnormalforceandadefined
effectivelength
0
.Themethodgivesanominalsecondordermomentbasedonadeflection,
whichinturnisbasedontheeffectivelengthandanestimatedmaximumcurvature.
Other
methodsareavailableinBSEN1992-1-1.
Thedesignmomentis:
Ed
=
0Ed
+
2
where
BS EN 1992-1-1
5.8.3.1(1) & NA
BS EN 1992-1-1
5.8.8.1(1)
BS EN 1992-1-1
5.8.3.1(1)
BS EN 1992-1-1
5.2.7
BS EN 1992-1-1
6.1(4)
BS EN 1992-1-1
5.8.3.2(3)
BS EN 1992-1-1
5.8.8.2(1)
5.6.2
BS EN 1992-1-1
5.8.4(4)
35
Structuralanalysis
0Ed
= firstordermoment,includingtheeffectofimperfections(andmaybetakenas
0E
)
2
= nominalsecondordermoment
Themaximumvalueof
Ed
isgivenbythedistributionsof
0Ed
and
2
;thelattermaybetaken
asparabolicorsinusoidalovertheeffectivelength.
Forbracedstructures
(seeFigure5.8):
Ed
=MAX{
0e
+
2
;
02
;
01
+0.5
2
}
Forunbracedstructures:
Ed
=
02
+
2
Formomentswithoutloadsappliedbetweentheirends,differingfirstorderendmoments
01
and
02
(seeabove)maybereplacedbyanequivalentfirstorderendmoment
0e
:
0e
=0.6
02
+0.4
01
≥0.4
02
Thenominalsecondordermoment
2
is
2
=
Ed
2
where
Ed
= designvalueofaxialforce
2
= deflection
= (/)
o
2
/
 = curvature=
r
h
(
yd
/(
s
0.45))

r
= (
u
–)/(
u
–
bal
)≤1.0
Note:
r
maybederivedfromcolumncharts.

u
= 1+w
w = mechanicalreinforcementratio
=(
s
/
c
)(
yd
/
cd
)asinSection5.6.1above
 =
Ed
/
c
cd
asdefinedinSection5.6.1above

bal
= valueofatmaximummomentofresistanceandmaybetakenas0.4

h
=1+bh
ef
1.0
b = 0.35+(
ck
/200)–(l/150)
l = slendernessratio
0
/
PD 6687-1
2.11
BS EN 1992-1-1
5.8.8.2(2)
BS EN 1992-1-1
5.8.8.2(3)
BS EN 1992-1-1
5.8.8.2(4)
BS EN 1992-1-1
5.8.8.3
Figure 5.8
Moments in
braced columns
+
=
a) First order
moments for
non-slender columns
b) Additional second
order moments for
slender columns
c) Total moment
diagram for
slender columns
2
=
Ed
2
02
02
1
Ed
0e
0e
+
2
01
0.5
2
01
+0.5
2
36
 = radiusofgyrationoftheuncrackedconcretesection
h
ef
= effectivecreepcoefficientasdefinedinSection5.6.1

0
= effectivelengthofcolumn

s
= 200GPa
 = factordependingonthecurvaturedistribution(seebelow)
Forconstantcrosssection,=10(p
2
)isnormallyused.Ifthefirstordermomentisconstant,a
lowervalueshouldbeconsidered(8isalowerlimit,correspondingtoconstanttotalmoment).
Biaxial bending
Separatedesignineachprincipaldirection,disregardingbiaxialbending,maybeundertakenas
afirststep.Nofurthercheckisnecessaryif:
0.5 ≤ l
y
/l
z
≤2.0and,forrectangularsections,and
0.2 ≥ (
y
/
eq
)/(
z
/
eq
)≥5.0
where
l
y
,l
z
 = slendernessratios
0
/withrespecttothey-andz-axes

y
=
Edy
/
Ed

eq
= 3.46
z
(=forrectangularsections)

z
=
Edz
/
Ed

eq
= 3.46
y
(=forrectangularsections)
where

Ed
= designvalueofaxialforce

Edy
,
Edz
=designmomentintherespectivedirection.(Momentsdueto
imperfectionsneedbeincludedonlyinthedirectionwheretheyhave
themostunfavourableeffect.)
Note:forsquarecolumns(
y
/
eq
)/(
z
/
eq
)=
Edy
/
Edz
Ifthisconditionisnotsatisfied,andintheabsenceofanaccuratecross-sectiondesignforbiaxial
bending,thefollowingsimplifiedcriterionmaybeused:
(
Edz
/
Rdz
)
+(
Edy
/
Rdy
)
≤1.0
where

Rdy
,
Rdz
= designmomentaroundtherespectiveaxisincludingsecondordermoment
inthedirectionwhereitwillgivethemostunfavourableeffect.
 = anexponent:forcircularorellipticalsections,=2.0,forrectangular
sections,interpolatebetween
= 1.0for
Ed
/
Rd
=0.1
= 1.5for
Ed
/
Rd
=0.7
= 2.0for
Ed
/
Rd
=1.0
Corbels
Definition
Corbelsareshortcantileversprojectingfromcolumnsorwallswiththeratioofshearspan
(i.e.thedistancebetweenthefaceoftheappliedloadandthefaceofthesupport)tothe
depthofthecorbelintherange0.5to2.0.
5.6.3
5.7
5.7.1
BS EN 1992-1-1
5.8.9(2)
BS EN 1992-1-1
5.8.9(3)
BS EN 1992-1-1
5.8.9(2)
BS EN 1992-1-1
5.8.9(4)
BS EN 1992-1-1
3.2.7(4)
BS EN 1992-1-1
5.8.8.2(4)
37
StructuralanalysisStructuralanalysis
Analysis
Corbels(
c
<
0
)maybedesignedusingstrutandtiemodels(seeFigure5.9)
orasshortbeams
designedforbendingandshear.
Theinclinationofthestrutislimitedby1.0≤tany≤2.5.
If
c
≤0.5
c
closedhorizontalorinclinedlinkswith
s,lnk
≥0.5
s,main
shouldbeprovidedin
additiontothemaintensionreinforcement(seeFigure5.10a).
If
c
>0.5
c
and
Ed
>
Rd,c
(seeSection7.2.1)closedverticallinkswith
s,lnk
≥0.5
Ed
/
yd
shouldbeprovidedinadditiontothemaintensionreinforcement(seeFigure5.10b).
Themaintensionreinforcementshouldbeanchoredatbothends.Itshouldbeanchoredin
thesupportingelementonthefarfaceandtheanchoragelengthshouldbemeasuredfrom
the location of the vertical reinforcement in the near face.The reinforcement should be
anchoredinthecorbelandtheanchoragelengthshouldbemeasuredfromtheinnerfaceof
theloadingplate.
If there are special requirements for crack limitation, inclined stirrups at the re-entrant
openingcanbeeffective.
Thecheckofthecompressionstrutcaneffectivelybemadebylimitingtheshearstresssuch
that
Ed
≤0.5
w
v'
cd
where
v' =1–(
ck
/250)

cd
 = a
cc
ck
/g
C
a
cc
=
0.85
Ed
td
Ed
H
Ed
0
c
y
s
Rd,max
c
wd
Key
wd
= designvalueofforce
instirrup
= tie
= compressionstrut
Figure 5.9
Corbel strut-and-tie model
PD 6687 B3
BS EN 1992-1-1
6.5.2(2)
PD 6687
fig. B4
5.7.2
38
5.8
Figure 5.10
Corbel detailing
Lateral instability of slender beams
Lateralinstabilityofslenderbeamsshallbetakenintoaccountwherenecessary,e.g.forprecast
beamsduringtransportanderection,forbeamswithoutsufficientlateralbracinginthefinished
structureetc.Geometricimperfectionsshallbetakenintoaccount.Alateraldeflectionof/300
should be assumed as a geometric imperfection in the verification of beams in unbraced
conditions, with = total length of beam. In finished structures, bracing from connected
membersmaybetakenintoaccount
Second order effects in connection with lateral instability may be ignored if the following
conditionsarefulfilled:
persistentsituations:
0t
/≤50/()
1/3
and/≤2.5
transientsituations:
0t
/≤70/()
1/3
and/≤3.5
where
0t
=distancebetweentorsionalrestraints
= totaldepthofbeamincentralpartof
0t
= widthofcompressionflange
Torsionassociatedwithlateralinstabilityshouldbetakenintoaccountinthedesignof
supportingstructures.
PD 6687
fig. B5
BS EN 1992-1-1
5.9
39
Bendingandaxialforce
Bending and axial force
Assumptions
Indeterminingtheresistanceofsections,thefollowingassumptionsaremade.
Planesectionsremainplane.
Straininthebondedreinforcement,whetherintensionorcompression,isthesameasthat
inthesurroundingconcrete.
Tensilestrengthoftheconcreteisignored.
RectangularstressdistributioninthesectionisasshowninFigure6.1.Otherstress–strain
relationshipsaregiveninBSEN1992-1-1Cl.3.1.7.
StressesinreinforcementarederivedfromFigure6.2.Theinclinedbranchofthedesignline
maybeusedwhenstrainlimitsarechecked.
Forsectionsnotfullyincompression,thecompressivestraininconcreteshouldbelimited
toe
cu2
(seeFigure6.3).
Forsectionsinpureaxialcompression,thecompressivestraininconcreteshouldbelimited
toe
c2
(seeFigure6.3).
Forsituationsintermediatebetweenthesetwoconditions,thestrainprofileisdefinedby
assumingthatthestrainise
c2
athalfthedepthofthesection(seeFigure6.3).
ExpressionsderivedfromFigures6.1to6.3areprovidedinSection17.
Table 6.1
Values for
n and l when f
ck
> 50
f
ck
e
cu3
a
n
b
l
c
55
0.00313 0.98 0.79
60
0.00288 0.95 0.78
70
0.00266 0.90 0.75
Key
a e
cu3
(%)=2.6+35[(90–
ck
)/100]
4
b n =1–(
ck
–50)/200
c
l =0.8–(
ck
–50)/400
BS EN 1992-1-1
fig. 6.1
BS EN 1992-1-1
3.1.7(3), fig. 3.5
BS EN 1992-1-1
6.1(2)
BS EN 1992-1-1
fig. 3.5
6
6.1
e
cu3
yd
s
c
n
cd
c
l
s
e
s
For
ck
≤ 50MPa,e
cu3
=0.0035,n =1andl=0.8.ForotherconcreteclassesseeTable6.1
= neutralaxisdepth
c
(
s
) = forceinconcrete(steel)
e
cu3
= ultimatecompressivestraininconcrete = effectivedepth
e
s
= tensilestraininreinforcement = leverarm
Figure 6.1
Rectangular stress distribution
40
e
uk
Idealised
Design
Strain,
e
Stress, s
e
ud
yk

yk
yd
=
yk
/g
S

yk
/
g
S

yk
yd
/
s
BS EN 1992-1-1
fig. 3.8
Where
 = (
t
/
y
)
k
(SeeTable3.3)
yk
= characteristicyieldstrengthofreinforcement
yd
= designyieldstrengthofreinforcement
t
= tensilestrengthofreinforcement
g
S
= partialfactorforreinforcingsteel=
1.15
e
ud
= designstrainlimitforreinforcing
steel=
0.9e
uk
e
uk
= characteristicstrainofreinforcementat
maximumforce(seeTable3.3)
Figure 6.2
Idealised and design stress–strain diagrams for reinforcing steel (for tension and compression)
e
p(0)
e
ud
e
c2
e
cu2
(e
cu3
)
(e
c3
)
e
s
,e
p
De
p
e
c
e
y
s2
p
s1
0
a) Section b) Strain
(1–e
c2
/e
cu2
)
or
(1–e
c3
/e
cu3
)
Concretecompression
strainlimit
Concretepure
compression
strainlimit
Reinforcingsteel
tensionstrain
limit
Where
s1
= areaofreinforcingsteelinlayer1
p
= areaofprestressingsteel
= effectivedepth
= overalldepthofsection
e
c
= compressivestraininconcrete
e
s
= straininreinforcingsteel
e
p(0)
= initialstraininprestressingsteel
De
p
= changeinstraininprestressingsteel
e
ud
= designstrainlimitforreinforcingsteelintension
e
c3
= compressivestrainlimitinconcreteforconcreteinpureaxialcompressionassuming
bilinearstress–strainrelationship(seeFigure3.4ofBSEN1992-1-1).
e
c3
() =1.75for
ck
≤50MPa
e
c3
() =1.75+0.55[(
ck
–50)/40]for
ck
>50MPa
e
cu2
= (=e
cu3
)compressivestrainlimitinconcretenotfullyinpureaxialcompression
e
cu3
()=3.5for
ck
≤50MPa.
e
cu3
() = 2.6+0.35[(90–
ck
)/100]
4
for
ck
>50MPa
e
y
= reinforcementyieldstrain
Figure 6.3
Possible strain distributions in the ultimate limit state
BS EN 1992-1-1
fig. 6.1
41
Shear
Shear
General
Definitions
Fortheverificationoftheshearresistancethefollowingsymbolsaredefined:
Rd,c
= designshearresistanceofamemberwithoutshearreinforcement
Rd,s
= designvalueoftheshearforcethatcanbesustainedbytheyieldingshear
reinforcement
Rd,max
= designvalueofthemaximumshearforcethatcanbesustainedbythemember,
limitedbycrushingofthecompressionstruts
Theseresisttheappliedshearforce,
Ed
.
Requirements for shear reinforcement
If
Ed
 ≤
Rd,c
, no calculated shear reinforcement is necessary. However, minimum shear
reinforcementshouldstillbeprovided(seeSection15.2.6)exceptin:
Slabs,whereactionscanberedistributedtransversely.
Membersofminorimportance,whichdonotcontributesignificantlytotheoverall
resistanceandstabilityofthestructure(e.g.lintelswithaspanoflessthan2m).
If
Ed
>
Rd,c
shear reinforcementis required such that
Rd,s
>
Ed
.The resistance of the
concretetoactasastrutshouldalsobechecked.
Inmemberssubjectpredominantlytouniformlydistributedloading,thefollowingapply:
Shearatthesupportshouldnotexceed
Rd,max
.
Requiredshearreinforcementshouldbecalculatedatadistance fromthefaceofthe
supportandcontinuedtothesupport.
Thelongitudinaltensionreinforcementshouldbeabletoresisttheadditionaltensileforce
causedbyshear(seeSection15.2.2).
TheUKNAlimitsshearstrengthofconcretehigherthanC50/60tothatofC50/60.
Shear and transverse bending
Duetothepresenceofcompressivestressfieldsarisingfromshearandbending,theinteraction
betweenlongitudinalshearandtransversebendinginthewebsofboxgirdersectionsshouldbe
consideredinthedesign.When
Ed

Rd,max
<0.2or
Ed
/
Rd,max
<0.1,thisinteractioncanbe
disregarded(where
Rd,max
and
Rd,max
representrespectivelythemaximumwebcapacityfor
longitudinalshearandtransversebending).
Furtherinformationontheinteractionbetweenshearandtransversebendingmaybefoundin
AnnexMMofBSEN1992-2.
Resistance of members not requiring shear reinforcement
General situation
Thedesignvaluefortheshearresistanceisgivenby:
Rd,c
=[(
0.18
/g
C
)(100r
l
ck
)
1/3
+
0.15
s
cp
]
w
≥(
0.035
1.5
ck
0.5
+
0.15
s
cp
)
w
BS EN 1992-1-1
6.2.1(1)
BS EN 1992-1-1
6.2.1(3)
BS EN 1992-1-1
6.2.1(4)
BS EN 1992-1-1
6.2.1(5)
BS EN 1992-1-1
6.2.1(8)
BS EN 1992-1-1
6.2.1(7)
BS EN 1992-2
3.1.2(2) & NA
BS EN 1992-2
6.2.106 (101)
BS EN 1992-2
6.2.2(101) & NA
7
7.1
7.1.1
7.1.2
7.1.3
7.2
7.2.1
42
where
= 1+(200/)
0.5
≤2.0(inmm;seeTable7.1)
g
C
=
0.15
r
l
=
sl
/(
w
)≤0.02
where
sl
=areaofthetensilereinforcementextendingatleast
bd
+beyondthesection
considered(seeFigure7.1);theareaofbondedprestressingsteelmaybeincludedin
thecalculationof
sl
.Inthiscaseaweightedmeanvalueofmaybeused.
bd
=designanchoragelength
w
=smallestwidthofthecross-sectioninthetensilearea
s
cp
=
Ed
/
c
<0.2
cd
(MPa)
where
Ed
 = axialforceinthecross-sectionduetoloadingorprestressinginnewtons
(
Ed
>0forcompression).Theinfluenceofimposeddeformationson
Ed
maybeignored.
C
= areaofconcretecross-section(mm
2
)
Table 7.1
V
Rd,c '
shear resistance without shear reinforcement where s
cp
= 0 (MPa)
r
l
= A
s
/(bd) Effective depth d (mm)
200 225 250 275 300 350 400 450 500 600 750
0.25%
0.54 0.52 0.50 0.48 0.47 0.45 0.43 0.41 0.40 0.38 0.36
0.50%
0.59 0.57 0.56 0.55 0.54 0.52 0.51 0.49 0.48 0.47 0.45
0.75%
0.68 0.66 0.64 0.63 0.62 0.59 0.58 0.56 0.55 0.53 0.51
1.00%
0.75 0.72 0.71 0.69 0.68 0.65 0.64 0.62 0.61 0.59 0.57
1.25%
0.80 0.78 0.76 0.74 0.73 0.71 0.69 0.67 0.66 0.63 0.61
1.50%
0.85 0.83 0.81 0.79 0.78 0.75 0.73 0.71 0.70 0.67 0.65
1.75%
0.90 0.87 0.85 0.83 0.82 0.79 0.77 0.75 0.73 0.71 0.68
2.00%
0.94 0.91 0.89 0.87 0.85 0.82 0.80 0.78 0.77 0.74 0.71
k 2.000 1.943 1.894 1.853 1.816 1.756 1.707 1.667 1.632 1.577 1.516
Notes
1 TablederivedfromBSEN1992-1-1andtheUKNationalAnnex.
2 Tablecreatedfor
ck
=30MPaassumingverticallinks.
3 Forr
l
≥0.4%and
ck
= 25MPa,applyfactorof0.94
ck
= 45MPa,applyfactorof1.14

ck
= 35MPa,applyfactorof1.05
ck
≥ 50MPa,applyfactorof1.19

ck
= 40MPa,applyfactorof1.10
Uncracked regions in prestressed members
Inprestressedsingle-spanmemberswithoutshearreinforcement,theshearresistanceofthe
regionscrackedinbendingmaybecalculatedusingtheExpressioninSection7.2.1.Inregions
uncrackedin bending(where the flexural tensile stress is smaller than
ctk,0.05
/g
C
) the shear
resistanceshouldbelimitedbythetensilestrengthoftheconcrete.Intheseregionstheshear
resistanceisgivenby:
Rd,c
=(
w
)(
ctd
2
+a
l
s
cp
ctd
)
0.5
where
 = secondmomentofarea

w
= widthofthecross-sectionatthecentroidalaxis,allowingforthepresenceofducts
(seebelow)
BS EN 1992-1-1
6.2.2(2)
7.2.2
43
Shear
 = firstmomentofareaaboveandaboutthecentroidalaxis
a
l
=
x

pt2
≤1.0forpretensionedtendons
= 1.0forothertypesofprestressing

x
= distanceofsectionconsideredfromthestartingpointofthetransmissionlength

pt2
= upperboundvalueofthetransmissionlengthoftheprestressing(Seesection14.6)
s
cp
= concretecompressivestressatthecentroidalaxisduetoaxialloadingand/or
prestressing(s
cp
=
Ed

c
inMPa,
Ed
>0incompression)
Alternatively,wherethereisnoaxialforce,includingprestressing
Rd,c
=
w
Rd,c
with
Rd,c
availablefromTable7.1
Inmostpracticalcasesif
Ed
<
Rd,c
shearreinforcementwillnotberequired
where
Ed
=shearstressforsectionswithoutshearreinforcement=
Ed
/
w
.
Rd,c
maybeinterpolatedfromTable7.1.
Short span shear enhancement
TheapproachinBSEN1992-1-1ofapplyingareductionfactortotheloadisnotsuitable
forcaseswithmultiple,indirectordistributedloads.Therefore,intheNAtoBSEN1992-2,
theexpressionfor
Rd,c
hasbeenmodifiedfromtherecommendedvaluesothattheeffects
ofshearenhancementaretakenintoaccountthroughincreasingtheshearresistanceof
membersneartosupports.SeeFigure7.2.
Formemberswithactionsappliedatadistancea
v
where0.5≤a
v
≤2:
k
g
C
(100r
1
f
ck
)
b
+ 0.15s
cp
V
Rd,c
=
0.18
a
v
2d
[]
b
w
d
providedthattheshearforce,
Ed
,isnotmultipliedbyb(BSEN1992-1-1,Cl.6.2.2(6))andthe
longitudinalreinforcementisfullyanchoredatthesupport.
Figure 7.1
Definition of A
sl
a) End support
b) Internal support
Section
considered
Section
considered
Section
considered
45º
45º
sl
sl
sl
bd
bd
bd
Ed
Ed
Ed
45º
BS EN 1992-2
fig. 6.3
BS EN 1992-2
NA 6.2.2(101)
PD 6687-2
7.2.2
7.2.3
44
Figure 7.2
Loads near supports
b) Corbel
v
a) Beam with direct support
v
Resistance of members requiring shear reinforcement
Basis
ThedesignofmemberswithshearreinforcementisbasedonthetrussmodelshowninFigure
7.3.
AsimplifiedversionofthisdiagramisshowninFigure7.4.
b) Web thickness b
w
w
w
a) Truss model
td
Tensilechord
Shearreinforcement
Compressionchord
Struts
cd
(coty–cota)
y
a
z=0.9
az
az
Figure 7.3
Truss model and notation for shear reinforced members
Figure 7.4
Variable strut angle, y
Concretestrutincompression
Longitudinalreinforcementintension
Verticalshearreinforcement
y
BS EN 1992-2
fig. 6.5
BS EN 1992-1-1
6.2.3
7.3
7.3.1
BS EN 1992-1-1
fig. 6.4
45
Shear
Shear resistance check
Theresistanceoftheconcretesectiontoactasastrut
Rd,max
shouldbecheckedtoensurethat
itequalsorexceedsthedesignshearforce,
Ed
i.e.ensurethat:
Rd,max
= a
cw
w
v
1
cd
(coty+tany)≥
Ed
withverticallinks
= a
cw
w
v
1
cd
(coty+cota)/(1+cot
2
y)≥
Ed
withinclinedlinks
where
 = leverarm(SeeSection7.3.3)
v
1
=
0.6[1–(
ck
/250)](1–0.5cosa)

cd
=
1.0
ck
/
1.5
y = angleofinclinationofthestrut,suchthatcotyliesbetween1.0and2.5.
a = angleofinclinationofthelinkstothelongitudinalaxisForverticallinkscota=0.
a
cw
= coefficienttakingaccountofthestateofthestressinthecompressionchord(see
Table7.2)
=
1
fornon-prestressedstructures
=
(1+s
cp
/
cd
)for0<s
cp
≤0.25
cd
=
1.25for0.25
cd
<s
cp
≤0.5
cd
=
2.5(1–s
cp
/
cd
)for0.5
cd
<s
cp
<1.0
cd
where
s
cp
=meancompressivestress,measuredpositive,intheconcreteduetothedesign
axialforce.
s
cp
shouldbeobtainedbyaveragingitovertheconcretesectiontakingaccountofthereinforcement.The
valueofs
cp
neednotbecalculatedatadistancelessthan0.5cotyfromtheedgeofthesupport.
Thevaluesofv
1
anda
cw
shouldnotgiverisetoavalueof
Rd,max
greaterthan200
w
2
at
sectionsmorethanadistancefromtheedgeofasupport.Forthispurpose,thevalueof
w
doesnotneedtobereducedforducts.
Table 7.2
Values for a
cw
f
ck
f
cd
Mean compressive stress, s
cp
0 0.5 1 2 3 4 5 10 20 30
20 13.3
1 1.04 1.08 1.15 1.23 1.25 1.25 0.63
25 16.7
1 1.03 1.06 1.12 1.18 1.24 1.25 1.00
30 20.0
1 1.03 1.05 1.10 1.15 1.20 1.25 1.25
35 23.3
1 1.02 1.04 1.09 1.13 1.17 1.21 1.25 0.36
40 26.7
1 1.02 1.04 1.08 1.11 1.15 1.19 1.25 0.63
45 30.0
1 1.02 1.03 1.07 1.10 1.13 1.17 1.25 0.83
50 33.3
1 1.02 1.03 1.06 1.09 1.12 1.15 1.25 1.00 0.25
60 40.0
1 1.01 1.03 1.05 1.08 1.10 1.13 1.25 1.25 0.63
70 46.7
1 1.01 1.02 1.04 1.06 1.09 1.11 1.21 1.25 0.89
Inthecaseofstraighttendons,ahighlevelofprestress(s
cp
/
cd
>0.5)andthinwebs,ifthe
tensionandthecompressionchordsareabletocarrythewholeprestressingforceandblocksare
providedattheextremityofbeamstodispersetheprestressingforce(seeFigure7.5),itmaybe
assumedthattheprestressingforceisdistributedbetweenthechords.Inthesecircumstances,
thecompressionfieldduetoshearonlyshouldbeconsideredintheweb(a
cw
=1).
P
d
P
d,t
P
d,c
P
d
= P
d,c
+
P
d,t
Figure 7.5
Dispersion of prestressing by end blocks within the chords
BS EN 1992-2
6.2.3(103)
& NA
BS EN 1992-2
6.2.3(103) & NA
BS EN 1992-2
fig. 6.101
7.3.2
BS EN 1992-1-1
Exp. (6.9) Exp.
(6.14) & NA
46
Themaximumeffectivecross-sectionalareaoftheshearreinforcement
sw,max
forcoty=1is
givenby:
aa
cw
v
1
f
cd
A
sw,max
f
ywd
b
w
s
Lever arm, z
Intheshearanalysisofreinforcedconcrete,theapproximatevalue=0.9maynormallybe
used.
Thisisnotappropriatewhen:
Thereisanaxialforceorprestress,or
Thewidthatthecentroidisgreaterthantheminimumcross-sectionwidthin
compression,or
Thecross-sectionhasatensionflangebutnocompressionflange
Insuchcasestheleverarmshouldbedeterminedbasedonananalysisofthesection.
Shear reinforcement required, A
sw
/s
The cross-sectional area of the shear reinforcement required is calculated using the shear
resistance:
Rd,s
=(
sw
/)
ywd
(coty+cota)sina≤
Rd,max

where

sw
 = cross-sectionalareaoftheshearreinforcement.(For
sw,min
seeSection15.2.6)
 = spacingofthestirrups
 = leverarm(SeeSection7.3.3)

ywd
=
ywk
/g
S
=designyieldstrengthoftheshearreinforcement
a = angleofthelinkstothelongitudinalaxis
Forverticallinks,cota=0andsina=1.0,and:
sw
/≥
Ed
/(
ywd
coty)
Webs containing metal ducts
Wherethewebcontainsgroutedmetalductswithadiameterf>
w
/8theshearresistance
Rd,max
shouldbecalculatedonthebasisofanominalwebthicknessgivenby:
w,nom
=
w
–0.5SfwherefistheouterdiameteroftheductandSfisdeterminedforthe
mostunfavourablelevel.
Forgroutedmetalductswithf≤
w
/8,
w,nom
=
w
Fornon-groutedducts,groutedplasticductsandunbondedtendonsthenominalwebthicknessis:
w,nom
=
w
–1.2Sf
Thevalue1.2isintroducedtotakeaccountofsplittingoftheconcretestrutsduetotransverse
tension.Ifadequatetransversereinforcementisprovidedthisvaluemaybereducedto1.0.
Additional tensile forces
Theadditionaltensileforce,D
td
,inthelongitudinalreinforcementduetoshear
Ed
maybe
calculatedfrom:
D
td
=0.5
Ed
(coty–cota)
Ed
/z+D
td
shouldbetakenasnotgreaterthan
Ed,max
/z
BS EN 1992-1-1
Exp. (6.15)
BS EN 1992-1-1
Exp. (6.13)
PD 6687-2
7.2.4.1
BS EN 1992-1-1
6.2.3(1)
BS EN 1992-1-1
Exp. (6.8)
BS EN 1992-1-1
6.2.3(6)
BS EN 1992-1-1
Exp. (6.16)
BS EN 1992-1-1
Exp. (6.17)
BS EN 1992-1-1
Exp. (6.18)
7.3.3
7.3.4
7.3.5
7.3.6
47
Shear
where

Ed,max
=maximummomentalongthebeam
Thisadditionaltensileforcegivesrisetothe‘shift’ruleforthecurtailmentofreinforcement
(seeSection15.2).
Inthecaseofbondedprestressing,located withinthetensilechord,theresistingeffectof
prestressingmaybetakenintoaccountforcarryingthetotallongitudinaltensileforce.Inthe
case of inclined bonded prestressing tendons in combination with other longitudinal
reinforcement/tendonstheshearstrengthmaybeevaluated,byasimplification,superimposing
twodifferenttrussmodelswithdifferentgeometry(Figure7.6);aweightedmeanvaluebetween
y
1
andy
2
maybeusedforconcretestressfieldverificationwithExpression(6.9).
y
2
y
1
Figure 7.6
Superimposed resisting model for shear
Members with actions applied near bottom of section
Whereloadisappliednearthebottomofasection,sufficientshearreinforcementtocarrythe
load to the top of the section should be provided in addition to any shear reinforcement
requiredtoresistshear.
Shear between web and flanges of T-sections
Thelongitudinalshearstress,
Ed
,atthejunctionbetweenonesideofaflangeandthewebisdetermined
bythechangeofthenormal(longitudinal)forceinthepartoftheflangeconsidered,accordingto:
Ed
=D
d
/(
f
D)
where

f
= thicknessofflangeatthejunctions
D = lengthunderconsideration,seeFigure7.7
D
d
= changeofthenormalforceintheflangeoverthelengthD
A
A
F
d
F
d
S
f
b
eff
A
sf
h
f
F
d
+ DF
d
F
d
+ DF
d
Dx
b
w
y
f
Longitudinal bar
anchored beyond
this projected point
Compressive struts
Figure 7.7
Notations for the connection between flange and web
BS EN 1992-2
6.2.3(107)
BS EN 1992-2
fig. 6.102N
BS EN 1992-1-1
6.2.1(9)
BS EN 1992-2
6.2.4(103)
BS EN 1992-1-1
fig. 6.7
7.3.7
7.3.8
48
ThemaximumvaluethatmaybeassumedforDishalfthedistancebetweenthesectionwhere
themomentis0andthesectionwherethemomentismaximum.Wherepointloadsareapplied
thelengthDshouldnotexceedthedistancebetweenpointloads.
Alternatively,consideringalengthDofthebeam,thesheartransmittedfromthewebtothe
flangeis
Ed
D/andisdividedintothreeparts:oneremainingwithinthewebbreadthandthe
othertwogoingouttotheflangeoutstands.Itshouldbegenerallyassumedthattheproportion
of the force remaining within the web is the fraction
w
/
eff
 of the total force.A greater
proportion may be assumed if the full effectiveflange breadth is not required to resistthe
bendingmoment.InthiscaseacheckforcracksopeningatSLSmaybenecessary.
Therateofchangeoftheflangeforcescanbeunderestimatediftheeffectsofwebshearon
theflangeforcesarenotincluded,particularlyforcompressionflanges.Thechordforcesas
determinedforthedesignofthewebreinforcementshouldthereforebeused.
Forcompressionflanges,
d
maybecalculatedasfollows:
d
=(
eff
–
w
)
cd
/(2
eff
)when
f
>
c
d
=(
eff
–
w
)
cd
f
/2 when
f
≤
c
where
c
=depthofthecompressionzone
cd
=totalforceinthecompressionchordofthesheartrussintheweb
Fortensionflanges,
d
maybecalculatedbydeterminingtheproportionofthetotaltension
chordforce,
td
,carriedineachsideoftheflange.
Thetransversereinforcementperunitlength
sf

f
maybedeterminedasfollows:
(
sf

yd

f
)≥
Ed
f
/coty
f
Topreventcrushingofthecompressionstrutsintheflange,thefollowingconditionshouldbesatisfied:
Ed
≤
0.6(1–
ck
/250)
cd
siny
f
cosy
f
where

cd
=
1.0
ck
/
1.5
Thepermittedrangeofthevaluesforcoty
f
are:
1.0
≤coty
f
≤
2.0
forcompressionflanges(45°≥y
f
≥26.5°)
1.0
≤coty
f
≤
1.25
fortensionflanges(45°≥y
f
≥38.6°)
If
Ed
islessthanorequalto
0.4
ctd
noextrareinforcementabovethatforflexureisrequired.
Longitudinaltensionreinforcementintheflangeshouldbeanchoredbeyondthestrutrequired
to transmit the force back to the web at the section where this reinforcement is required
(SeeSection(A–A)ofFigure7.7).
Interface shear between concretes placed at different times
Whencompositeactionisassumedbetweentwolayersofconcretecastatdifferenttimes,
itisnecessarytopreventslipbetweenthetwolayers.Thiswillresultinshearstressatthe
interface,whichshouldbeverified.Theforceattheinterfaceistheflangeforceinthenew
concretecausedbythebendingmomentonthecompositesection.
Theshearstress at theinterfacebetween concretecastatdifferenttimesshouldsatisfy the
following.
Edi
≤
Rdi
PD 6687-2,
7.2.5
BS EN 1992-1-1
6.2.4(4)
BS EN 1992-1-1
6.2.4(6)
BS EN 1992-1-1
6.2.5
7.3.9
49
Shear
where

Edi
=designvalueoftheshearstressintheinterfaceandisgivenby:

Edi
=b
Ed
/(
i
)
where
Ed
= transverseshearforce
= leverarmofthecompositesection
i
= widthoftheinterface(seeFigure7.8)
b = ratioofthelongitudinalforceinthenewconcreteandthetotallongitudinalforce
eitherinthecompressionortensionzone,bothcalculatedforthesectionconsidered
Rdi
=
ctd
+s
n
+r
yd
(sina +cosa)≤0.5
0.6(1–
ck
/250)
cd
where
thevaluesofanddependontheinterfacesurfaceandareshowninTable7.3
ctd
=
ctk,0.05
/
1.5
cd
=
1.0
ck
/
1.5
s
n
= stressnormaltotheinterfacenottobetakengreaterthan0.6
cd
r =
s
/
i
s
= areaofreinforcementcrossingtheinterfaceincludingordinaryshearreinforcement
(ifany),withadequateanchorageatbothsidesoftheinterface
i
= areaofthejoint
a =angleofreinforcementcrossingtheinterface(45°≤a ≤90°)
b
i
b
i
a) Double-T unit with toppingb) I-beam with topping
Figure 7.8
Examples of interfaces for shear
Table 7.3
Values of m and for various interfaces
Classification of interface surfaces
Friction coefficient,
m
Shear coefficient,
Very smooth: surface cast against steel,
plastic or smooth wooden moulds
0.5 0.10
Smooth: slipformed or extruded surface or
face untreated after vibration
0.6 0.20
Rough: a surface with at least 3 mm
roughness at 40 mm spacing
0.7 0.40
Whereasteppeddistributionoftransversereinforcementisused,thetotalresistancewithin
anybandofreinforcementshouldbenotlessthanthetotallongitudinalshearinthesame
length and the longitudinal shear stress evaluated at any point should not exceed the
resistanceevaluatedlocallybymorethan10%.
BS EN 1992-1-1
fig. 6.8
BS EN 1992-1-1
6.2.5(2)
PD 6687-2
7.2.6
50
8
8.1
8.1.1
8.1.2
8.2
8.2.1
Punching shear
General
Basis of design
Punching shearis a local shear failurearound concentrated loads on slabsand the most
commonsituationswherethepunchingshearrulesarerelevantinbridgeapplicationsarein
thedesignofpilecaps,padfootings,anddeckslabswhicharesubjectedtowheelloadsand
aroundsupportsinslabssupportedondiscretebearingsorcolumns.Theresultingstressesare
verifiedalongdefinedcontrolperimetersaroundtheloadedarea.Theshearforceactsoveran
area
eff
,whereisthelengthoftheperimeterand
eff
istheeffectivedepthoftheslab
takenastheaverageoftheeffectivedepthsintwoorthogonaldirections.
Design procedure
Atthecolumnperimeter,ortheperimeteroftheloadedarea,themaximumpunchingshear
stressshouldnotbeexceeded,
Ed
≤
Rd,max
.
Punchingshearreinforcementisnotnecessaryif
Ed
≤
Rd,c
Where
Ed
exceeds
Rd,c
forthecontrolsectionconsidered,punchingshearreinforcementshould
beprovidedaccordingtoSection8.5
where
Ed
= designvalueoftheappliedshearstress(seeSections8.2and8.3)

Rd,max
= designvalueofthemaximumpunchingshearresistance(seeSection8.6)along
thecontrolsectionconsidered

Rd,c
= designvalueofpunchingshearresistanceofaslabwithoutpunchingshear
reinforcement,alongthecontrolsectionconsidered(seeSection8.4)

Rd,cs
= designvalueofpunchingshearresistanceofaslabwithpunchingshear
reinforcement,alongthecontrolsectionconsidered(seeSection8.5)
Applied shear stress
General
Wherethesupport reactioniseccentricwithregardtothecontrolperimeter,themaximum
shearstressshouldbetakenas:
Ed
=b
Ed
/(
i
)
where
 = meaneffectivedepth
= (
y
+
z
)/2

i
= lengthofthecontrolperimeterunderconsideration(seeSection8.3)

Ed
= designvalueofappliedshearforce
b = factordealingwitheccentricity

y
= effectivedepthiny-direction

z
= effectivedepthinz-direction
BS EN 1992-1-1
6.4.3(1)
BS EN 1992-1-1
6.4.3(3)
BS EN 1992-1-1
6.4.3(2)
BS EN 1992-1-1
6.4.1
51
Punchingshear
8.2.2
8.2.3
Values of b (conservative values from diagram)
Forbracedstructures,whereadjacentspansdonotdifferbymorethan25%,thevaluesof
bshowninFigure8.1maybeused.
Cornercolumn
Edgecolumn
Internalcolumn
b
=1.5
b
=1.4
b
=1.15
Figure 8.1
Recommended
values for b
Values of b (using calculation method)
As an alternative to Section 8.2.2, the values of b can be obtained using the following
methods.
Internal columns
Forinternalrectangularcolumnswithloadingeccentricto axis:
b=1+(
Ed
/
Ed
)(
1
/
1
)
where
 = coefficientdependingontheratioofthecolumndimensions
1
and
2
as
showninFigure8.2(seeTable8.1)

Ed
= designvalueoftheappliedinternalbendingmoment

1
= lengthofthebasiccontrolperimeter(seeFigure8.3)

1
= adistributionofshearasillustratedinFigure8.2andisafunctionof
1

1
=
1
2
/2+
1
2
+4
2
+16
2
+2p
1
forarectangularcolumn
=
ʃ
i
||forthegeneralcase

0
where
||= theabsolutevalue
 =thedistanceoffromtheaxisaboutwhich
Ed
acts
 =alengthincrementoftheperimeter
2
2
1
2
Figure 8.2
Shear distribution
due to an unbalanced
moment at a slab/
internal column
connection
BS EN 1992-1-1
6.4.3(6)
BS EN 1992-1-1
fig. 6.21N & NA
BS EN 1992-1-1
Exp. (6.39)
BS EN 1992-1-1
Exp. (6.40)
BS EN 1992-1-1
fig. 6.19
52
Table 8.1
Values for k for rectangular loaded areas
c
1
/c
2
0.5 1.0 2.0 3.0
k 0.45 0.60 0.70 0.80
Forinternalrectangularcolumnswithloadingeccentricto axes:
b=1+1.8[(
y
/
z
)
2
+(
z
/
y
)
2
]
0.5
where

y
and
z
=
Ed
/
Ed
alongyandzaxesrespectively

y
and
z
= thedimensionsofthecontrolperimeter(seeFigure8.3)
Forinternalcircularcolumns:
b=1+0.6p/(+4)
where
 = diameterofthecircularcolumn
 =
Ed
/
Ed
1
=basiccontrolperimeter
2
2
2
2
1
1
1
y
z
Figure 8.3
Typical basic control perimeters around loaded areas
Edge columns
Foredgecolumns,withloadingeccentricityperpendicularandinteriortotheslabedge,
b=
1
/
1*
where

1
= basiccontrolperimeter(seeFigure8.4)

1*
= reducedcontrolperimeter(seeFigure8.5)
Foredgecolumns,witheccentricitytobothaxesandinteriortotheslabedge
b=
1
/
1*
+
par
1
/
1
where
 = coefficientdependingontheratioofthecolumndimensions
1
and
2
as
showninFigure8.5(seeTable8.2)

par
= eccentricityparalleltotheslabedgeresultingfromamomentaboutanaxis
perpendiculartotheslabedge

1
=
2
2
/4+
1
2
+4
1
+8
2
+p
2
where

1
and
2
areasinFigure8.5
BS EN 1992-1-1
table 6.1
BS EN 1992-1-1
Exp. (6.43)
BS EN 1992-1-1
Exp. (6.42)
BS EN 1992-1-1
fig. 6.13
BS EN 1992-1-1
6.4.3(4)
BS EN 1992-1-1
Exp. (6.44)
53
Punchingshear
2
1
1
1
2
2
2
2
2
1
=basiccontrolperimeter
Figure 8.4
Control perimeters for loaded areas at or close to an edge or corner
≤1.5
≤1.5
≤1.5
≤0.5
1
≤0.5
1
≤0.5
2
2
2
2
2
1
1
2
2
1*
1*
a) Edge column b) Corner column
Figure 8.5
Equivalent control perimeter u
1*
Table 8.2
Values for k for rectangular loaded areas at edge of slabs and subject to eccentric loading in
both axes
c
1
/2c
2
* 0.5 1.0 2.0 3.0
k 0.45 0.60 0.70 0.80
Note
*differsfromTable8.1
Corner columns
Forcornercolumnswitheccentricitytowardsinterioroftheslab
b=
1
/
1*
where

1
= basiccontrolperimeter(seeFigure8.4)

1*
=reducedcontrolperimeter(seeFigure8.5)
BS EN 1992-1-1
fig. 6.15
BS EN 1992-1-1
fig. 6.20
BS EN 1992-1-1
6.4.3(5)
BS EN 1992-1-1
Exp. (6.46)
54
Perimeter columns where eccentricity is exterior to slab
Foredgeandcornercolumns,whereeccentricityisexteriortotheslabtheexpression
b=1+(
Ed
/
Ed
)
(
1
/
1
i
appliesasforinternalcolumnsabove.However,
Ed
/
Ed
(=eccentricity)ismeasuredfrom
thecentroidofthecontrolperimeter.
Control perimeters
Basic control perimeter u
1
(internal columns)
Thebasiccontrolperimeter
1
maybetakentobeatadistanceof2.0fromthefaceofthe
loadedarea,constructedsoastominimiseitslength(seeinFigure8.3).
Openings
Whereopeningsin the slabexistwithin 6fromthefaceof the loadedarea, partofthe
controlperimeterwillbeineffectiveasindicatedinFigure8.6.
a) Where l
1
l
2
b) Where l
1
> l
2
Opening
2
≤6
2
1
≤
2
1
>
2
(
1
2
)
0.5
1
Ineffective
Figure 8.6
Control perimeter near an opening
Perimeter columns
Foredgeorcornercolumns(orloadedareas),thebasiccontrolperimeter
1
showninFigure
8.4maybeusedforconcentricloading.Thisperimetermustnotbegreaterthantheperimeter
obtainedforinternalcolumnsfromusingFigure8.3(seeSection8.3.1).
Whereeccentricityofloadsisinteriortotheslab,thereducedcontrolperimeter,
1*
shown
inFigure8.5shouldbeusedasindicatedinSection8.2.3.
Column heads
Wherecolumnheadsareprovided,distinctionshouldbemadebetweencaseswhere
H
>2
H
andwhere
H
<2
H
where

H
= projectionofheadfromthecolumn

H
= heightofheadbelowsoffitofslab
BS EN 1992-1-1
6.4.3(4)
6.4.3(5)
BS EN 1992-1-1
6.4.2
BS EN 1992-1-1
fig. 6.14
BS EN 1992-1-1
6.4.2(5)
BS EN 1992-1-1
6.4.2(9)
8.3
8.3.1
8.3.2
8.3.3
8.3.4
55
Punchingshear
Where
H
<2
H
punchingshearneedstobecheckedonlyinthecontrolsectionoutsidethe
columnhead(seeFigure8.7).Where
H
>2
H
thecriticalsectionsbothwithintheheadand
slabshouldbechecked(seeFigure8.8).
Loadedarea
load
Note
y =26.6º,tany=0.5
H
cont
cont
H
H
<2.0
H
H
<2.0
H
Basiccontrolsection
y
y
y
y
Figure 8.7
Slab with enlarged column head where l
H
< 2.0 h
H
Note
y=26.6º,tany=0.5
H
>2
H
H
>2
H
cont,ext
cont,ext
cont,ext
cont,ext
Loadedarea
load
Basiccontrol
sectionsfor
circularcolumns
H
H
H
H
y
y
y
y
Figure 8.8
Slab with enlarged column head where l
H
> 2h
H
Punching shear resistance without shear reinforcement
The punching shear resistance of a slab should be assessed for the basic control section
accordingtoSection8.3.Thedesignpunchingshearresistancemaybecalculatedasfollows:
Thedesignvaluefortheshearresistanceisgivenby:
Rd,c
=(
0.18
/g
C
)(100r
l
ck
)
1/3
+0.15s
cp
≥
0.035
1.5
ck
0.5
+
0.15
s
cp
where
= 1+(200/)
0.5
≤2.0(inmm)
g
C
=
1.5
r
l
= (r
ly,
r
lz
)
0.5
≤0.02
where
r
ly,
r
lz
= reinforcementratiosintheanddirectionsrespectively.Thevaluesshould
becalculatedasmeanvalues,takingintoaccountaslabwidthequaltothe
columnwidthplus3eachside
s
cp
= (s
cy
+s
cz
)/2
s
cy
=
Ed,y
/
cy
s
cz
=
Ed,z
/
cz
BS EN 1992-1-1
fig. 6.17
BS EN 1992-1-1
fig. 6.18
BS EN 1992-1-1
6.4.4
BS EN 1992-1-1
Exp. (6.47) & NA
8.4
56
where
Ed,y
,
Ed,z
 = longitudinalforcesacrossthefullbayforinternalcolumnsand
thelongitudinalforcesacrossthecontrolsectionforedge
columns.Theforcemaybefromaloadorprestressingaction
C
= areaofconcretecross-sectionaccordingtothedefinitionof
Ed
(mm
2
)
Punching shear resistance with shear reinforcement
WhereshearreinforcementisrequireditshouldbecalculatedinaccordancewiththeExpression
below:
Rd,cs
=0.75
Rd,c
+1.5(/
r
)
sw
ywd,ef
(1/
1
)sina
where

sw
= areaofoneperimeterofshearreinforcementaroundthecolumn(mm
2
)
(for
sw,min
seeSection15.4.3)

r
= radialspacingofperimetersofshearreinforcement(mm)

ywd,ef
 = effectivedesignstrengthofreinforcement(250+0.25)≤
ywd
 = meaneffectivedepthinthetwoorthogonaldirections(mm)

1
= basiccontrolperimeterat2fromtheloadedarea(seeFigure8.3)
sina = 1.0forverticalshearreinforcement
a = anglebetweentheshearreinforcementandplaneoftheslab
Assumingverticalreinforcement
sw
=(
Ed
–0.75
Rd,c
)
r
1
/(1.5
ywd,ef
)perperimeter
Punching shear resistance adjacent to columns
Adjacenttothecolumnthepunchingshearresistanceislimitedtoamaximumof:
Ed
=b
Ed
/
0
≤
Rd,max
where
b =factordealingwitheccentricity(seeSection8.2)

Ed
=designvalueofappliedshearforce
 =meaneffectivedepth
0
=lengthofcolumnperipheryforaninteriorcolumn
=2(
1
+
2
)forinteriorcolumns
=
2
+3≤
2
+2
1
foredgecolumns
=3≤
1
+
2
forcornercolumns
where
1
= columndepth(foredgecolumns,measuredperpendiculartothefreeedge)
2
= columnwidthasillustratedinFigure8.5

Rd,max
=0.5v
cd
where
v=
0.6[1–(
ck
/250)]
Control perimeter where shear reinforcement is no
longer required, u
out
Shearreinforcementisnotrequiredataperimeterwheretheshearstressduetotheeffective
shearforcedoesnotexceed
Rd,c
.Theoutermostperimeterofshearreinforcementshouldbe
placedatadistancenotgreaterthan
1.5
withintheperimeterwherereinforcementisno
longerrequired.SeeFigures8.9,15.6and15.7.
8.5
8.6
8.7
BS EN 1992-1-1
6.4.5
BS EN 1992-1-1
Exp. (6.52)
BS EN 1992-1-1
6.4.5(3)
BS EN 1992-1-1
6.4.5(4) & NA
57
Punchingshear
Perimeter
out,ef
Perimeter
out
≤2
>2
1.5
1.5
Figure 8.9
Control perimeters at internal columns
Distribution of shear reinforcement
TheExpressiongiveninSection8.5assumesaconstantareaofshearreinforcementoneachperimeter
movingawayfromtheloadedareaasshowninFigure8.9.Incaseswherethereinforcementareavaries
onsuccessiveperimeters,therequiredshearreinforcementmaybedeterminedbycheckingsuccessive
perimeters,
i
betweenthebasiccontrolperimeterandtheperimeter
out
,toensurethattheshear
reinforcementofareaS
sw
satisfiesthefollowingexpression:
f
ywd, ef
sin a
SA
sw
(
v
Ed
0.75 v
Rd, c
)
u
i
d
=
where S
sw
is the total shear reinforcement as shown in Figure 8.10, placed within an
area enclosed between the control perimeter
i
chosen and one 2 inside it, except that
shear reinforcement within a distance of 0.3 from the inner perimeter and 0.2 from the
controlperimetershouldbeignored.FurtherguidanceandbackgroundaregivenbyHendy&Smith
[20]
2d
0.2d
0.3d
1
U
out
U
i
Notes
1 
i
isbetween
1
and
out
2Reinforcement

S
sw
toincludeincludefor
checkonperimeter
i
Figure 8.10
Reinforcement to include in punching shear check
BS EN 1992-1-1
fig. 6.22
PD 6687-2
7.3.2
8.8
PD 6687-2
fig. 4
58
BS EN 1992-1-1
fig. 6.16
8.9
Punching shear resistance of foundation bases
In addition to theverification at thebasic control perimeter at2 fromthe faceof the
column, perimeters within the basic perimeter should also be checked for punching
resistance.Incaseswherethedepthofthebasevaries,theeffectivedepthofthebasemay
beassumedtobethatattheperimeteroftheloadedarea.SeeFigure8.11.
Forconcentricloadingthenetappliedforceis
Ed,red
=
Ed
–D
Ed
where

Ed
= appliedshearforce
D
Ed
= netupwardforcewithintheperimeterconsidered,i.e.upwardpressurefromsoil
minusself-weightofbase.
Whenacolumntransmitsanaxialload
Ed
andamoment
Ed
,thepunchingshearstressis
givenbythefollowingexpression:
Ed
=(
Ed,red
/)[1+
Ed
/(
Ed,red
)]
where
 = theperimeterbeingconsidered
 = acoefficientdependingontheratioofthecolumndimensionsshowninFigure8.2
andTable8.1
=
1
Forasquarecolumnandageneralperimeterat
i
withlength
i
:
2
+ 2c
2
W
1
=
+
r
i
r
i
c
1
c
2
c
1
2
c
1
+ 4r
i
2
+ p
Thepunchingshearresistance
Rd,c
giveninSection8.4maybeenhancedforcolumnbases
bymultiplyingtheExpressionsby2/,whereisthedistanceoftheperimeterconsidered
fromtheperipheryofthecolumn.
Loadedarea
y
y≥arctan(0.5)
Figure 8.11
Depth of control section in a footing with variable depth
BS EN 1992-1-1
6.4.2(6)
BS EN 1992-1-1
6.4.4(2)
BS EN 1992-1-1
Exp. (6.51)
PD 6687-2
7.3.1
59
Torsion
Torsion
General
Torsionalresistanceshouldbeverifiedinelementsthatrelyontorsionforstaticequilibrium.
Instaticallyindeterminatebuildingstructuresinwhichtorsionarisesfromconsiderationof
compatibilityandthestructureisnotdependentontorsionforstability,itwillnormallybe
sufficienttorelyondetailingrulesforminimumreinforcementtosafeguardagainstexcessive
cracking,withouttheexplicitconsiderationoftorsionatULS.
InEurocode2,torsionalresistanceiscalculatedbymodellingallsectionsasequivalentthin-
walledsections.Complexsections,suchasT-sectionsaredividedintoaseriesofsub-sections
andthetotalresistanceistakenasthesumoftheresistancesoftheindividualthin-walled
sub-sections.
Thesamestrutinclinationyshouldbeusedformodellingshearandtorsion.Thelimitsfor
cotynotedinSection7forshearalsoapplytotorsion.
Torsional resistances
Thedesigntorsionalresistancemoment
Rd,max
=2va
cw
cd
k
ef,i
siny cosy
where
v =
0.6[1–(
ck
/250)]
k
= areaenclosedbythecentrelinesofconnectingwallsincludingtheinnerhollow
area(seeFigure9.1)
ef,i
= effectivewallthickness(seeFigure9.1).Itmaybetakenas/butshouldnotbe
takenaslessthantwicethedistancebetweenedge
(theoutsidefaceofthe
member)
andcentreofthelongitudinalreinforcement.Forhollowsectionsthe
realthicknessisanupperlimit
y = angleofthecompressionstrut
a
cw
= coefficienttakingaccountofthestateofstressinthecompressionchord(seeTable7.2)
=
1
fornon-prestressedstructures
=
(1+s
cp
/
cd
)for0<s
cp
≤0.25
cd
=
1.25for0.25
cd
<s
cp
≤0.5
cd
=
2.5(1–s
cp
/
cd
)for0.5
cd
<s
cp
<1.0
cd
where
s
cp
=meancompressivestress,measuredpositive,intheconcreteduetothedesign
axialforce.
s
cp
should be obtained by averaging it over the concrete section taking account of the
reinforcement.Thevalueofs
cp
neednotbecalculatedatadistancelessthan0.5cotyfrom
theedgeofthesupport.
BS EN 1992-1-1
6.3.1
BS EN 1992-1-1
6.3.2
BS EN 1992-2
6.3.2 (104)
BS EN 1992-2
6.2.3(103) & NA
9
9.1
9.2
60
Centreline
Cover
Outeredgeof
effectivecross-section,
circumference,
ef
i
Ed
ef
/2
Figure 9.1
Notations used in Section 9
Thetorsionalresistanceofasolidrectangularsectionwithshearreinforcementontheouter
periphery
Rd,max
maybededucedfromthegeneralexpression,assuming
eff
=/:
Rd,max
=2va
cw
cd
2
3
sinycosy
where
2
 = coefficientobtainedfromTable9.1
= breadthofthesection(<,depthofsection)
Table 9.1
Values of k
2
h/b 1 2 3 4
k
2
0.141 0.367 0.624 0.864
Torsionalresistancegovernedbytheareaofclosedlinksisgivenby:
Rd
=
sw
2
k
coty
ywd
/
where
sw
= areaoflinkreinforcement
yw,d
= designstrengthofthelinkreinforcement
= spacingoflinks
Therequiredareaoflongitudinalreinforcementfortorsion,S
sl
,maybecalculatedfrom:
S
sl
yd
=
Ed
k
coty/(2
k
)

where

Ed
= applieddesigntorsion

k
 = perimeterofthearea
k
Incompressivechords,thelongitudinalreinforcementmaybereducedinproportiontotheavailable
compressiveforce.Intensilechords,thelongitudinalreinforcementfortorsionshouldbeaddedto
theotherreinforcement.Thelongitudinalreinforcementshouldgenerallybedistributedoverthe
lengthofside
i
,(sidelengthofwalldefinedbythedistancebetweentheintersectionpointswith
theadjacentwalls),butforsmallersectionsitmaybeconcentratedattheendsofthislength.
Bonded prestressing tendons can be taken into account limiting their stress increase to
Ds
p
≤500MPa.Inthatcase,S
sl
yd
inExpression(6.28)isreplacedbyS
sl
yd
+
p
Ds
p
.
ENV 1992-1-1
Exp. (4.43)
[21]
BS EN 1992-2
Exp. (6.28)
BS EN 1992-2
6.3.2(103)
BS EN 1992-1-1
fig. 6.11
61
Torsion
9.3
Combined torsion and shear
Insolidsectionsthefollowingrelationshipshouldbesatisfied:
(
Ed
/
Rd,max
)+(
Ed
/
Rd,max
)≤1.0
where

Rd,max
 =designtorsionalresistancemoment
= 2va
cw
cd
k
ef,i
sinycosyasinSection9.2.

Rd,max
=maximumdesignshearresistance
= a
cw
w
v
1

cd
(coty+cota)/(1+cot
2
y)asinSection7.3.2.
The effectsof torsionand shearfor both hollowand solidmembers maybe superimposed,
assumingthesamevalueforthestrutinclinationy.ThelimitsforygiveninSection7.3.2are
alsofullyapplicableforthecaseofcombinedshearandtorsion.
Forboxsections,eachwallshouldbeverifiedseparately,forthe combinationofshearforces
derivedfromshearandtorsion(Figure9.2).
a) Torsion
b) Shear
c) Combination
+ =
Figure 9.2
Internal actions combination within the different walls of a box section
BS EN 1992-2
Exp. (6.29)
BS EN 1992-2
6.3.2 (102)
BS EN 1992-2
fig. 6.104
62
10
10.1
10.1.1
10.1.2
Strut-and-tie models, bearing zones
and partially loaded areas
Design with strut-and-tie models
Struts
Thedesignstrengthforaconcretestrutinaregionwithtransversecompressivestressorno
transversestressmaybecalculatedfromthefollowingExpression(seeFigure10.1).
s
Rd,max
=
cd
=
0.85
ck
/
1.5
Figure 10.1
Design strength of concrete
struts without transverse
tension
s
Rd,max
s
Rd,max
Figure 10.2
Design strength of concrete
struts with transverse
tension
s
Rd,max
s
Rd,max
Thedesignstrengthforconcretestrutsshouldbereducedincrackedcompressionzonesand,
unlessamorerigorousapproachisused,maybecalculatedfromthefollowingExpression(see
Figure10.2).
s
Rd,max
=0.6
(1–
ck
/250)
cd
where

cd
=
1.0
ck
/
1.5

Ties
Reinforcementrequiredtoresisttheforcesattheconcentratednodesmaybesmearedovera
length(seeFigure10.3).Whenthereinforcementinthenodeareaextendsoveraconsiderable
length of an element, the reinforcement should be distributed over the length where the
compressiontrajectoriesarecurved(tiesandstruts).Thetensileforce,,maybeobtainedby:
Forpartialdiscontinuityregions( ≤/2)
=(–)/4
Forfulldiscontinuityregions( >/2)
=(1–0.7)/4
BS EN 1992-1-1
6.5.2
BS EN 1992-1-1
fig. 6.23
BS EN 1992-1-1
fig. 6.24
BS EN 1992-1-1
6.5.3
63
Strut-and-tiemodels,bearingzonesandpartiallyloadedareas
10.1.3
a) Partial discontinuity b) Full discontinuity
b
ef
b
ef
= 0.5H + 0.65a; aA h
a
b
z = h/2
h = H/2
F
F
h = b
Discontinuity
region
Continuity
region
Discontinuity
region
H
b
ef
b
ef
=
b
a
b
F
F
Figure 10.3
Parameters for the determination of transverse tensile forces in a compression field with smeared
reinforcement
Nodes
Therulesfornodesalsoapplytoregionswhereconcentratedforcesaretransferredinamember
andwhicharenotdesignedbythestrut-and-tiemethod.Theforcesactingatnodesshouldbe
inequilibrium.Transversetensileforcesperpendiculartoaninplanenodeshouldbeconsidered.
The dimensioning and detailing of concentrated nodes are critical in determining their
loadbearingresistance.Concentratednodesmaydevelop,forexample,wherepointloads are
applied, atsupports,inanchoragezoneswith concentrationofreinforcementor prestressing
tendons,atbendsinreinforcingbars,andatconnectionsandcornersofmembers.
Thedesignvaluesforthecompressivestresseswithinnodesmaybedeterminedinthreeways:
Incompressionnodeswherenotiesareanchoredatthenode(seeFigure10.4)
s
Rd,max
=
1.0
(1–
ck
/250)
cd
where
s
Rd,max
 = maximumstresswhichcanbeappliedattheedgesofthenode
cd
=
0.85
ck
/
1.5
s
Rd,2
s
Rd,3
s
Rd,1
s
c,0
a
2
a
3
a
1
F
cd,1
= F
cd,1r
+ F
cd,l
F
cd,2
F
cd,3
F
cd,0
F
cd,1l
F
cd,1r
Figure 10.4
Compression node without ties
BS EN 1992-1-1
fig 6.25
BS EN 1992-1-1
6.5.4
BS EN 1992-1-1
fig. 6.26
64
Incompression–tensionnodeswithanchoredtiesprovidedinonedirection(seeFigure10.5)
s
Rd,max
=
0.85
(1–
ck
/250)
cd
where
s
Rd,max
isthemaximumofs
Rd,1
ands
Rd,2
cd
=
0.85
ck
/
1.5
s
Rd,1
s
Rd,2
s
0
s
u
s
0
F
td
a
1
l
bd
F
cd,1
F
cd,2
R 2s
0
a
2
Figure 10.5
Compression–tension node with reinforcement provided in one direction
Incompression–tensionnodeswithanchoredtiesprovidedinmorethanonedirection(see
Figure10.6),
s
Rd,max
=
0.75
(1–
ck
/250)
cd
where
cd
=
0.85
ck
/
1.5
s
Rd,max
F
td,1
F
td,2
F
cd
Figure 10.6
Compression–tension node with reinforcement provided in two directions
BS EN 1992-1-1
fig. 6.27
BS EN 1992-1-1
fig. 6.28
65
Strut-and-tiemodels,bearingzonesandpartiallyloadedareas
Theanchorageofthereinforcementincompression-tensionnodesstartsatthebeginningofthe
node;inthecaseofasupportanchorage,startingatitsinnerface(seeFigure10.5).Theanchorage
lengthshouldextendovertheentirenodelength.Incertaincases,thereinforcementmayalsobe
anchoredbehindthenode.
Partially loaded areas
Forauniformdistributionofloadonanarea
c0
(seeFigure10.7)theconcentratedresistance
forcemaybedeterminedasfollows:
Rdu

c0

cd
(
c1

c0
)
0.5

cd

c0
where

c0
= loadedarea,

c1
= maximumdesigndistributionareawithasimilarshapeto
c0

cd
=
0.85
ck
/
1.5
Thedesigndistributionarea
c1
requiredfortheresistanceforce
Rdu
shouldcorrespondtothe
followingconditions:
Theheightfortheloaddistributionintheloaddirectionshouldcorrespondtothe
conditionsgiveninFigure10.7.
Thecentreofthedesigndistributionarea
c1
shouldbeonthelineofactionpassing
throughthecentreoftheloadarea
c0
.
Ifthereismorethanonecompressionforceactingontheconcretecross-section,the
designeddistributionareasshouldnotoverlap.
Reinforcement should be provided to resist the tensile forces due to the effect of actions,
therulesforstrutandtiemaybeused.
Transversetensileforcescan arisein the localisedareanearaconcentratedloadandalso
from any further spread ofload outsidethe localised area.The strut-and-tie model used
should account for both of these potential sources of transverse tensile forces Further
guidanceandbackgroundaregivenbyHendy&Smith
[20]
.
Line of action
b
1
A
c1
A
c0
d
1
hR (b
2
b
1
) and
b
2
A 3
b1
d
2
A 3d
1
R (d
2
d
1
)
h
Figure 10.7
Design distribution for partially loaded areas
10.2
BS EN 1992-1-1
6.7
PD 6687-2
7.5
BS EN 1992-1-1
fig. 6.29
66
10.3
Bearing zones of bridges
Forbearingzonesofbridges,Section10.2forpartiallyloadedareasshouldbeused,noting
thefollowing.
ForconcreteclassesequaltoorhigherthanC55/67,theconcentratedresistanceforceshould
becalculatedusingthefollowingExpression:
Rdu

c0

cd
(0.46
ck
2/3
)(10.1
ck
)x(
c1

c0
)
0.5
3.0
c0

cd
(0.46
ck
)(10.1
ck
2/3
)
Thedistancefromtheedgeoftheloadedareatothefreeedgeoftheconcretesectionshould
notbelessthan1/6ofthecorrespondingdimensionoftheloadedareameasuredinthesame
direction.Innocaseshouldthedistancetothefreeedgebetakenaslessthan50mm.
Inordertoavoidedgesliding,uniformlydistributedreinforcementparalleltotheloadedfaceshould
beprovidedtothepointatwhichlocalcompressivestressesaredispersed.Thispointisdetermined
bydrawingalineatanangle,y(30°),tothedirectionofloadapplicationfromtheedgeofthesection
tointersectwiththeoppositeedgeoftheloadedsurface,asshowninFigure10.8.Thereinforcement
providedtoavoidedgeslidingshouldbeadequatelyanchored.
Figure 10.8
Edge sliding mechanism
F
Rdu
y
Thereinforcementprovidedinordertoavoidedgesliding(
r
)shouldbecalculatedinaccordance
withtheexpression
r
yd
≥
Rdu
/2.
BS EN 1992-2
fig. J.107
BS EN 1992-2
J.104.1 (103)
BS EN 1992-2
J.104.1 (102)
BS EN 1992-2
J.104.1 (104)
67
Prestressedmembersandstructures
Prestressed members and structures
General
Thesectionprovidesguidancethatisspecifictoprestressedconcreteusingstressedtendons.
Ingeneral,prestressisintroducedintheactioncombinationsdefinedinBSEN1990aspart
oftheloadingcasesanditseffectsshouldbeincludedintheappliedinternalmomentand
axialforce.
The contribution of the prestressing tendons to the resistance of the section should be
limited to theiradditional strength beyond prestressing.This requirementis most simply
achievedbytreatingthesecondaryeffectsofprestressasanappliedaction(i.e.aload),whilst
omittingtheprimaryeffectsofthedesignprestressingforce.Thismaybecalculatedassuming
thattheoriginofthestress–strainrelationshipofthetendonsisdisplacedbytheeffectsof
prestressing.
Brittle fracture
Brittlefailureofthemembercausedbyfailureofprestressingtendonsshouldbeavoidedby
using
oneofthreemethodsgivenbelow
.
Verification
Verifytheloadcapacityusingareducedareaofprestressasfollows:
Calculatetheappliedbendingmomentduetothefrequentcombinationofactions
freq
.
Determinethereducedareaofprestress,
p,Red
,thatresultsinthetensilestressreaching
ctm
attheextremetensionfibrewhenthesectionissubjecttothebendingmoment
calculatedabove.
p,Red
=(
freq
/–
ctm
)/[s
p
(1/
c
+/)]
where
= sectionmodulus
ctm
 =meanvalueofconcretecylindercompressivestrength
s
p
=stressintendonsjustpriortocracking
c
= areaofconcrete
= eccentricityofthetendons
FurtherguidanceisgivenbyHendy&Smith
[20]
Usingthisreducedareaofprestress,calculatetheultimateflexuralcapacity.Itshouldbe
ensuredthatthisexceedsthebendingmomentduetothefrequentcombination.
Redistributionofinternalactionswithinthestructuremaybetakenintoaccountforthis
verificationandtheultimatebendingresistanceshouldbecalculatedusingthematerial
partialfactorsforaccidentaldesignsituationsgiveninTable2.9.
Assumingthereisnoconventionalreinforcementthen:
freq
≥(
ctm
s
)/[(
s
/)–[s
p
(1/
c
+/)/
p0.1k
]]
where

s
=leverarmfortheprestress,where
p,Red
hasbeenusedtodeterminethe
accidentalultimatelimitstate.

ctm
= meanvalueofconcretecylindercompressivestrength
s
p
=stressintendonsjustpriortocracking
11
11.1
11.2
11.2.1
BS EN 1992-2
6.1(109)
68

c
=areaofconcrete
 =eccentricityofthetendons
FurtherguidanceisgivenbyHendy&Smith
[20]
Minimum provision
Theminimum reinforcementarea,
s,min
, isgivenbelow.Reinforcing steelprovidedfor other
purposesmaybeincludedin
s,min
.
s,min
=
rep
/(
s
yk
)
where

rep
= crackingbendingmomentcalculatedusinganappropriatetensilestrength,
ctk,0.05
attheextremetensionfibreofthesection,ignoringanyeffectof
prestressing.Atthejointofsegmentalprecastelements
rep
shouldbeassumed
tobezero

s
= leverarmattheultimatelimitstaterelatedtothereinforcingsteel
Thisminimumreinforcementsteelareashouldbeprovidedinregionswheretensilestressesoccur
intheconcreteunderthecharacteristiccombinationofactions.Inthischeckthesecondaryeffects
ofprestressingshouldbeconsideredandtheprimaryeffectsshouldbeignored.
Forpretensionedmembers,Expression(6.101a)shouldbeappliedusingoneofthealternative
approachesdescribedbelow:
Tendonswithconcretecoveratleast
1.0
timestheminimumspecifiedinFigure4.1are
consideredaseffectivein
s,min
.Avalueof
s
basedontheeffectivestrandsisusedinthe
expressionand
yk
isreplacedwith
p0.1k
.
Tendonssubjecttostresseslowerthan0.6
pk
afterlossesunderthecharacteristic
combinationofactionsareconsideredasfullyactive.Inthiscasethefollowingrequirement
shouldbemet.

s,min
yk
+
p
Ds
p
≥
rep
/
where
Ds
p
=smallerof0.4
ptk
and500MPa
Toensureadequateductilitytheminimumreinforcingsteelarea
s,min
,incontinuousbeams
shouldextendtotheintermediatesupportofthespanconsidered.Howeverthisextensionis
not necessary if, at the ultimate limit state, the resisting tensile capacity provided by
reinforcingandprestressingsteelabovethesupports, calculated with the characteristic
strength
yk
 and
p0.1k
 respectively, is less than the resisting compressive capacity of the
bottomflange.Thismeansthatthefailureofthecompressivezoneisnotlikelytooccur,and
canbeassessedasfollows:
s
yk
+
1.0
p
p0,1k
<
inf
0
1.0
ck
where
inf
 = thethicknessofthebottomflangeofthesection.IncaseofT-sections,
inf
is
takenasequalto
0
0
= thewidthofthebottomflangeofthesection
s
= theareaofreinforcedsteelinthetensilezoneattheultimatelimitstate
p
= theareaofprestressingsteelinthetensilezoneattheultimatelimitstate
Inspection
Agreementofanappropriateinspectionregimewiththerelevantnationalauthorityonthebasis
ofsatisfactoryevidence.
11.2.2
11.2.3
BS EN 1992-2
Exp. (6.101a)
BS EN 1992-2
6.1(110)
BS EN 1992-2
Exp. (6.101b)
BS EN 1992-2
Exp. (6.102)
69
Prestressedmembersandstructures
Prestressing force during tensioning
Maximum stressing force
Theforceappliedtoatendon,
max
(i.e.theforceattheactiveendduringtensioning)
shallnotexceedthefollowingvalue:
max
=
p
s
p,max
where

p
= cross-sectionalareaofthetendon
s
p,max
 = maximumstressappliedtothetendon
= MIN{
0.8
pk
;
0.9
p0,1k
}
Overstressingispermittediftheforceinthejackcanbemeasuredtoanaccuracyof±5%of
thefinalvalueoftheprestressingforce.Insuchcasesthemaximumprestressingforce
max
may
beincreasedto
0.95
p0.1k
p
(e.g.fortheoccurrenceofunexpectedlyhighfrictioninlong-line
pretensioning).
Forpre-tensioningthisrelaxationisintendedtobeusedonlywherethereare
unforeseenproblemsduringconstruction.
Theconcretecompressivestressinthestructureresultingfromtheprestressingforceandother
loadsactingatthetimeoftensioningorreleaseofprestress,shouldbelimitedto:
s
c
≤0.6
ck
()
where

ck
() = characteristiccompressivestrengthoftheconcreteattimewhenitissubjected
totheprestressingforce
Forpretensionedelementsthestressatthetimeoftransferofprestressmaybeincreasedto
0.7
ck
(),ifitcanbejustifiedbytestsorexperiencethatlongitudinalcrackingisprevented.
Ifthecompressivestresspermanentlyexceeds0.45
ck
()thenon-linearityofcreepshouldbe
takenintoaccount.
Prestress force
Thevalueoftheinitialprestressforce
m0
()(attime=
0
)appliedtotheconcreteimmediately
aftertensioningandanchoring(post-tensioning)oraftertransferofprestressing(pre-tensioning)
isobtainedbysubtractingfromtheforceattensioning
max
theimmediatelossesD
i
()and
shouldnotexceedthefollowingvalue:
m0
()=
p
s
pm0
()
where
s
pm0
() = stressinthetendonimmediatelyaftertensioningortransfer
= MIN{
0.75
pk
;
0.85
p0,1k
}
Atagiventimeanddistance(orarclength)fromtheactiveendofthetendonthemean
prestressforce
m,t
()isequaltothemaximumforce
max
imposedattheactiveend,minusthe
immediatelossesandthetimedependentlosses:
m,t
()=
m0
()-D
c+s+r
().
where
m,t
() = meanvalueoftheprestressforceatthetime>
0
andshouldbe
determinedwithrespecttotheprestressingmethod
D
c+s+r
() = changeinprestressduetotheresultofcreep,shrinkageoftheconcrete
andthelongtermrelaxationoftheprestressingsteel
Absolutevaluesareconsideredforallthelosses.
11.3
11.3.1
11.3.2
BS EN 1992-1-1
5.10.2.1
BS EN 1992-1-1
5.10.2.2(5)
BS EN 1992-1-1
5.10.3(2)
BS EN 1992-1-1
5.10.3(1)&(4)
70
Immediate losses
WhendeterminingtheimmediatelossesD
i
()thefollowingimmediateinfluencesshouldbe
consideredforpre-tensioningandpost-tensioningwhererelevant:
Lossesduetoelasticdeformationofconcrete,
D
el
.
Forpre-tensioning:
D
el
()=
p
p
s
c
()/
cm
()
where

p
= modulusofelasticityofprestressingsteel

cm
() = modulusofelasticityofconcreteattime,
s
c
() = stressintheconcreteadjacenttothetendonattransfer
Forpost-tensioning:
D
el
=
p
p
S(Ds
c
()/
cm
())
where
Ds
c
()=variationofstressintheconcreteatthecentreofgravityofthetendonsapplied
attime
 =(–1)/2whenconsideringlossesbeforestressing.Asanapproximationmaybe
takenas1/2
=1forthevariationsduetopermanentactionsappliedafterprestressing
 =numberofidenticaltendonssuccessivelyprestressed.
Lossesduetoshorttermrelaxation, D
r
(e.g.lossduetorelaxationoftheprestressing
duringtheperiodwhichelapsesbetweenthetensioningofthetendonsandprestressingof
theconcrete).
Lossesduetofriction,D
μ
(),inpost-tensionedtendonsmaybeestimatedfrom:
D
μ
()=
max
(1−e
–μ(y+kx)
)
where
y = sumoftheangulardisplacementsoveradistance(irrespectiveofdirectionorsign)
 = coefficientoffrictionbetweenthetendonanditsduct
 = unintentionalangulardisplacementforinternaltendons(perunitlength)
 = distancealongthetendonfromthepointwheretheprestressingforceisequalto
max
(theforceattheactiveendduringtensioning)
ThevaluesandaregivenintherelevantEuropeanTechnicalApproval.Intheabsenceofdata
giveninaEuropeanTechnicalApprovalthevaluesforgiveninTable11.1maybeassumed.
Unintendedangulardisplacementsforinternaltendonswillgenerallybeintherange0.005<
<0.01permetre.
Table 11.1
Coefficients of friction, μ, for post-tensioned internal tendons and external unbonded tendons
Tendon type Internal
tendons
a
External unbonded tendons
Steel duct:
non-lubricated
HDPE duct:
non-lubricated
Steel duct:
lubricated
HDPE duct:
lubricated
Cold drawn wire
0.17 0.25 0.14 0.18 0.12
Strand
0.19 0.24 0.12 0.16 0.10
Deformed bar
0.65
Smooth round bar
0.33
Key
aFortendonswhichfillabouthalfoftheduct
11.3.3
BS EN 1992-1-1
5.10.3(3)
BS EN 1992-1-1
5.10.5.1(2)
BS EN 1992-1-1
5.10.5.2(1)
BS EN 1992-1-1
5.10.5.2(2)&(3)
BS EN 1992-1-1
table 5.1
71
Prestressedmembersandstructures
Lossesduetoanchorageslip, D
sl
,
whichareavailablefromtheEuropeanTechnical
Approval.
Lossesduetofrictionatthebends(inthecaseofcurvedwiresorstrands).
Time-dependent losses of prestress
Asimplifiedmethodtoevaluatetimedependentlossesatlocationxunderthe
permanentloadsisasfollows:
A
p
Ds
p,c+s+r
DP
c+s+r
== A
p
e
cs
E
p
+ 0.8Ds
pr
+
E
p
E
cm
h
(t,t
0
)s
c,QP
(1 +)
1 +
A
c
z
cp
I
c
E
p
A
p
E
cm
A
c
2
[1 + 0.8 h
(t,t
0
)]
where
p
= areaofalltheprestressingtendonsatthelocation
Ds
p,c+s+r
= absolutevalueofthevariationofstressinthetendonsduetocreep,
shrinkageandrelaxationatlocation,attime
e
cs
= estimatedshrinkagestrain,inabsolutevalue

p
= modulusofelasticityfortheprestressingsteel

cm
= modulusofelasticityfortheconcrete
Ds
pr
= absolutevalueofthevariationofstressinthetendonsatlocation,at
time,duetotherelaxationoftheprestressingsteel.Itisdeterminedfor
astressofs
p
=s
p
(+
m0
+c
2
),whichistheinitialstressinthetendons
duetoinitialprestressandquasi-permanentactions
h (
0
) = creepcoefficientatatimeandloadapplicationattime
0
s
c,QP
= stressintheconcreteadjacenttothetendons,duetoself-weightandinitial
prestressandotherquasi-permanentactionswhererelevant.Thevalueofs
c,QP
maybetheeffectofpartofself-weightandinitialprestressortheeffectofa
fullquasi-permanentcombinationofactions(s
c
(+
m0
+c
2
)),depending
onthestageofconstructionconsidered
c
= areaoftheconcretesection
c
= secondmomentofareaoftheconcretesection

cp
=distance between the centre of gravity of the concrete section and the
tendons
Compressivestressesand thecorrespondingstrainsshouldbeused withapositive sign.This
Expressionappliesforbondedtendonswhenlocalvaluesofstressesareusedandforunbonded
tendonswhenmeanvaluesofstressesareused.Themeanvaluesshouldbecalculatedbetween
straightsections limitedby the idealised deviation pointsfor external tendons or along the
entirelengthincaseofinternaltendons.
Effects of prestressing at ultimate limit state
Ingeneralthedesignvalueoftheprestressingforcemaybedeterminedfrom
d,t
()=g
P
,
m,t
()
For prestressed members with permanently unbonded tendons, it is generally necessary to
takethedeformationofthewholememberintoaccountwhencalculatingtheincreaseofthe
stressintheprestressingsteel.Ifnodetailedcalculationismade,itmaybeassumedthatthe
increaseofthe stressfromthe effective prestresstothe stress inthe ultimate limitstate is
100MPaunlessthetendonisoutwithb
d
fromthetensionface,inwhichcaseDs
p,ULS
=0.
b =0.1for≥1000mm
=0.25for≤500mm
Thevalueofbmaybeinterpolatedforthevaluesofbetween500mmand1000mm.
Ifthestressincreaseinexternaltendonsiscalculatedusingthedeformationstateof
theoverallmember,non-linearanalysisshouldbeused.
11.3.4
11.3.5
BS EN 1992-1-1
5.10.6
BS EN 1992-1-1
5.10.8 & NA
BS EN 1992-2
5.10.8 (103)
72
Fatigue
Verification conditions
Becauseofthehighliveloadtodeadloadratio,deckslabsarelikelytobeamongsttheelements
mostaffectedbyfatiguecalculations.However,testsshowthattheactualstressrangesinthe
reinforcementinthesearemuchlowerthantheconventionalelasticcalculationssuggest.Because
ofthis,theNAtoBSEN1992-2identifiescaseswherefatigueassessmentisnotrequiredand
providesconservativerules.
Afatigueverificationisgenerallynotnecessaryforthefollowingstructuresandstructuralelements:
Footbridges,withtheexceptionofstructuralcomponentsverysensitivetowindaction.
Buriedarchandframestructureswithaminimumearthcoverof1mand1.5mforroad
andrailwaybridges.
Foundations.
Piersandcolumnswhicharenotrigidlyconnectedtosuperstructures.
Retainingwallsofembankmentsforroadsandrailways.
Abutmentsofroadandrailwaybridgeswhicharenotrigidlyconnectedtosuperstructures,
excepttheslabsofhollowabutments.
Prestressingandreinforcingsteel,inregionswhere,underthefrequentloadcombinationof
actionsand
k
onlycompressivestressesoccurattheextremeconcretefibres.
Fatigue verification for road bridges is not necessary for the local effects of wheel loads
applieddirectlytoaslabspanningbetweenbeamsorwebsprovidedthat:
Theslabdoesnotcontainweldedreinforcementorreinforcementcouplers.
Theclearspantooveralldepthratiooftheslabdoesnotexceed18.
Theslabactscompositelywithitssupportingbeamsorwebs.
Either:
theslabalsoactscompositelywithtransversediaphragms;or
thewidthoftheslabperpendiculartoitsspanexceedsthreetimesitsclearspan.
Internal forces and stresses for fatigue verification
Thestresscalculationshallbebasedontheassumptionofcrackedcross-sectionsneglectingthe
tensilestrengthofconcretebutsatisfyingcompatibilityofstrains.
Theeffectofdifferentbondbehaviourofprestressingandreinforcingsteelshallbetakeninto
accountbyincreasingthestressrangeinthereinforcingsteelcalculatedundertheassumption
ofperfectbondbythefactor,n,givenby
A
s
+ A
p
A
s
+ A
p
n =
j
c
f
s
/f
p
m
where:
s
=areaofreinforcingsteel
p
=areaofprestressingtendonortendons
f
s
=largestdiameterofreinforcement
f
p
 =diameterorequivalentdiameterofprestressingsteel
=1.6
P
forbundles
=1.75f
wire
forsingle7-wirestrandswheref
wire
isthewirediameter
=1.20f
wire
forsingle3-wirestrandswheref
wire
isthewirediameter
j =ratioofbondstrengthbetweenbondedtendonsandribbedsteelinconcrete.The
valueissubjecttotherelevantEuropeanTechnicalApproval.Intheabsenceofthis
thevaluesgiveninTable12.1maybeused.
12
12.1
12.2
BS EN 1992-2
6.8.1(102)
BS EN 1992-2
NA 6.8.1(102)
BS EN 1992-1-1
6.8.2
PD 6687-2
7.6.1
73
Fatigue
Table 12.1
Ratio of bond strength,
j, between tendons and reinforcing steel
Prestressing steel
j
Pre-tensioned Bonded, post-tensioned
C50/60 C70/85
Smooth bars and wires
Notapplicable 0.3 0.15
Strands
0.6 0.5 0.25
Indented wires
0.7 0.6 0.30
Ribbed bars
0.8 0.7 0.35
Note
ForintermediatevaluesbetweenC50/60andC70/85interpolationmaybeused.
Inthedesignoftheshearreinforcementtheinclinationofthecompressivestrutsy
fat
maybe
calculatedusingastrut-and-tiemodelorinaccordancewith
tan y
fat
= tan y 1.0
where
y = angleofcompressionstrutstothebeamaxisassumedinULSdesign(seeSection7.3.2).
Verification of concrete under compression or shear
S–Ncurvesrequiredtoundertakeafatigueverificationofconcreteundercompressionor
shearareunlikelytobeavailablefromNationalAuthorities.Intheabsenceofsuchdata,the
simplifiedapproachgiveninBSEN1992-2,AnnexNNmaybeusedforrailwaybridges,but
nosuchoptionexistsforhighwaybridges.
The fatigue verification for concrete under compression may be assumed
tobemet
 if the
followingconditionissatisfied:
f
cd,fat
s
c,max
≤ 0.5 + 0.45
f
cd,fat
s
c,min
where
s
c,max
= maximum compressive stress at a fibre under the frequent load combination
(compressionmeasuredpositive)
s
c,min
 = minimumcompressivestressatthesamefibrewheres
c,max
occurs.Ifs
c,min
isa
tensilestress,thens
c,min
shouldbetakenas0

cd,fat
= designfatiguestrengthofconcrete
ck
=
0.85
b
cc
(
0
)
cd
e1–
250
n
cd
=
1.0
ck
/
1.5
b
cc
(
0
)=coefficientforconcretestrengthatfirstloadapplication
=
b
cc
(t
0
) where = exp
s
1 –
28
t
0
0.5
where
0
 = timeofthestartofthecyclicloadingonconcreteindays
= 0.2forcementofstrengthClassesCEM42.5R,CEM52.5NandCEM52.5R(ClassR)
= 0.25forcementofstrengthClassesCEM32.5R,CEM42.5(ClassN)
= 0.38forcementofstrengthClassCEM32.5(ClassS)
Themaximumvaluefortheratios
c,max
/
cd,fat
isgiveninTable12.2.
12.3
PD 6687-2
7.6.2
BS EN 1992-1-1
table 6.2
BS EN 1992-1-1
6.8.7(2)
74
Table 12.2
Values for
s
c,max
/f
cd, fat
Concrete strength s
c,max
/f
cd, fat
ck
50MPa 0.9
ck
>50MPa 0.8
Formembersnotrequiringdesignshearreinforcementfortheultimatelimitstateitmaybe
assumedthattheconcreteresistsfatigueduetosheareffectswherethefollowingapply:
for ≥ 0:
≤ 0.5 + 0.45
≤ 0.9 up to C50/60
≤ 0.8 greater than C55/67
V
Ed,min
V
Ed,max
V
Ed,max
V
Rd,c
V
Ed,min
V
Rd,c
for < 0:
≤ 0.5
V
Ed,min
V
Ed,max
V
Ed,max
V
Rd,c
V
Ed,min
V
Rd,c
where
Ed,max
 =designvalueofthemaximumappliedshearforceunderfrequentload
combination
Ed,min
= isthedesignvalueoftheminimumappliedshearforceunderfrequentload
combinationinthecross-sectionwhere
Ed,max
occurs
Rd,c
= designvalueforshearresistanceaccordingtoSection7.2.1.
Limiting stress range for reinforcement under tension
Adequatefatigue resistancemaybe assumed for reinforcing bars under tension ifthestress
range under thefrequentcyclicload combinedwiththe basic combinationdoesnot exceed
70MPa
forunweldedbarsand
35MPa
forweldedbars.
For UK highway bridges, the values in Tables 12.3 and 12.4 may be used for straight
reinforcement.ThesearebasedonbarsconformingtoBS4449.Forbarsnotconformingto
BS4449,therulesforbars>16mmdiametershouldbeusedforallsizesunlesstheranges
forbars≤16mmdiametercanbejustified.
Table 12.3
Limiting stress ranges – longitudinal bending for unwelded reinforcing bars in road bridges, MPa
Span m Adjacent spans loaded Alternate spans loaded
Bars 16 mm Bars > 16 mm Bars 16 mm Bars > 16 mm
3.5
150 115 210 160
5
125 95 175 135
10
110 85 175 135
20
110 85 140 110
30 to 50
90 70 110 85
100
115 90 135 105
200
190 145 200 155
Notes
1Intermediatevaluesmaybeobtainedbylinearinterpolation.
2Thistableappliestoslabsbutneedonlybeappliedtothoseslabsthatdonotconformtothe
criteriagiveninSection12.1.
12.4
PD 6687-2
table 2A
BS EN 1992-1-1
6.8.7(4)
BS EN 1992-1-1
6.8.6(1)
PD 6687-2
7.6.3
75
Fatigue
Table 12.4
Limiting stress ranges – transverse bending for unwelded reinforcing bars in road bridges, MPa
Span m Bars 16 mm Bars > 16 mm
3.5
210 160
5
120 90
10
70 55
Notes
1Intermediatevaluesmaybeobtainedbylinearinterpolation.
2Thistableappliestoslabsbutneedonlybeappliedtothoseslabsthatdonotconformtothe
criteriagiveninSection12.1.
IfthestressrangelimitsexceedthevaluesgiveninTables12.3and12.4(e.g.forreinforcement
overthepier),fullfatiguechecksaretobecarriedoutusingthe‘damageequivalentstress
range’method,followingtheguidancegiveninAnnexNNofBSEN1992-2.Thestressranges
arecalculatedusing‘FatigueLoadModel3’,whichrepresentsafour-axlevehiclewithanall
upweightof48tonnes.AnnexNNfurtherincreasesthisweightto84tonnesforintermediate
supportsand67tonnesforotherareas.
PD 6687-2
table 2B
76
Serviceability
General
Thecommonserviceabilitylimitstatesconsideredare:
Stresslimitation.
Crackcontrol.
Deflectioncontrol.
Inthecalculationofstressesanddeflections,cross-sectionsshouldbeassumedtobeuncracked
providedthattheflexuraltensilestressdoesnotexceed
ct,eff
.Thevalueof
ct,eff
maybetaken
as
ctm
or
ctm,fl
providedthatthecalculationforminimumtensionreinforcementisalsobased
on the same value.For thepurposes of calculating crack widths and tension stiffening
ctm
shouldbeused.
Stress limitation
Longitudinalcracksmayoccurifthestresslevelunderthecharacteristiccombinationofloads
exceedsacriticalvalue.Suchcrackingmayleadtoareductionofdurability.Intheabsenceof
othermeasures,suchasanincreaseinthecovertoreinforcementinthecompressivezoneor
confinement by transverse reinforcement, it
isrecommendedthat
the compressive stress is
limitedtoavalue
0.6
ck
inareasexposedtoenvironmentsofexposureclassesXD,XFandXS
(seeTable4.2).Inthepresenceofconfinementthemaximumstresslimitis
0.66
ck
.
Ifthestressintheconcreteunderthequasi-permanentloadsislessthan
0.45
ck
,linearcreep
may be assumed. If the stress in concrete exceeds
0.45
ck
, non-linear creep should be
considered(seeSection3.1.2).
For the appearance unacceptable cracking or deformation may be assumed to be avoided
if,underthe characteristiccombinationofloads,thetensilestressinthereinforcementdoes
notexceed
0.8
yk
.Wherethestressiscausedbyanimposeddeformation,thetensilestress
should notexceed
1.0
yk
.The mean valueof the stress in prestressingtendons should not
exceed
0.75
pk
.
Crackcontrol(Section13.4)anddeflection(Section13.6) should alsobe
checked.
Calculation of crack widths
Thecrackwidth,
k
,maybecalculatedfromfollowingExpression:
k
=
r,max
(e
sm
–e
cm
)
where

r,max
= maximumcrackspacing
e
sm
= meanstraininthereinforcementundertherelevantcombinationofloads,
includingtheeffectofimposeddeformationsandtakingintoaccountthe
effectsoftensionstiffening.Onlytheadditionaltensilestrainbeyondthestate
ofzerostrainoftheconcreteatthesamelevelisconsidered
e
cm
= meanstrainintheconcretebetweencracks
e
sm
–e
cm
maybecalculatedfromtheExpression:
f
ct,eff
r
ct,eff
s
s
– k
t
E
s
(1 + a
e
r
p,eff
)
s
s
E
s
0.6
e
sm
e
cm
=
where
s
s
= stressinthetensionreinforcementassumingacrackedsection.For
pretensionedmembers,s
s
maybereplacedbyDs
p
,whichisthestress
variationinprestressingtendonsfromthestateofzerostrainofthe
concreteatthesamelevel
13
13.1
13.2
13.3
BS EN 1992-1-1
7.1
BS EN 1992-2
7.2(102) & NA
PD 6687-2
8.1.1
PD 6687-2
8.1.2
BS EN 1992-1-1
7.3.4
BS EN 1992-1-1
7.2(3)
BS EN 1992-1-1
7.2(5), NA
77
Serviceability

t
= factordependentonthedurationoftheload
= 0.6forshorttermloading
= 0.4forlongtermloading
a
e
= ratio
s
/
cm
r
p,eff
= (
s
+j
1
2
p
')/
c,eff
where

p
' = areaofpre-orpost-tensionedtendonswithin
c,eff
.

c,eff
 = effectiveareaofconcreteintensionsurroundingthereinforcementor
prestressingtendonsofdepth,
c,ef
,where
c,ef
isthelesserof
2.5(),()/3or/2(seeFigure13.3).
j
1
 = adjustedratioofbondstrengthtakingintoaccountthedifferent
diametersofprestressingandreinforcingsteel:
= (j f
s
/f
p
)
0.5
j = ratioofbondstrengthofprestressingandreinforcingsteel,according
toTable12.1
Ifonlyprestressingsteelisusedtocontrolcracking,j
1
=j
0.5
f
s
= largestbardiameterofreinforcingsteel
f
p
= equivalentdiameteroftendonaccordingtoSection12.2
Insituationswherebondedreinforcementisfixedatreasonablyclosecentreswithinthetension
zone(spacing≤5(+f/2),themaximumfinalcrackspacingmaybecalculatedfromfollowing
Expression(seeFigure13.1):
r,max
=
3

1
2
4
f/r
p,eff
where
f = bar diameter.Wherea mixtureofbardiametersisusedinasection,anequivalent
diameter,f
eq
,shouldbeused
where
f
eq
 = (
1
f
1
2
+
2
f
2
)/(
1
f
1
+
2
f
2
)

1
= numberofbarsofdiameterf
1

2
= numberofbarsofdiameterf
2

3
=
3.4

 = covertothelongitudinalreinforcement.
Thenominalcover,
nom
,maybeused.

1
= coefficientwhichtakesaccountofthebondpropertiesofthebonded
reinforcement
= 0.8forhighbondbars
= 1.6forbarswithaneffectivelyplainsurface(e.g.prestressingtendons)
f
Concrete
tension surface
Crack spacing predicted
by Expression (7.14)
Crack spacing
predicted by
Expression (7.11)
Actual
crack width
Neutral axis
(h – x)
5(c + f/2)
c
w
Figure 13.1
Crack width, w, at concrete surface relative to distance from bar
BS EN 1992-1-1
fig. 7.2
BS EN 1992-1-1
Exp. (7.11)
78

4
=
0.425

2
= coefficientwhichtakesaccountofthedistributionofstrain
= 0.5forbending
= 1.0forpuretension
Forcasesofeccentrictensionorforlocalareas,intermediatevaluesof
2
should
beusedwhichmaybecalculatedfromtherelation:

2
= (e
1
+e
2
)/(2e
1
)
e
1
= greatertensilestrainattheboundariesofthesectionconsidered,assessedon
thebasisofacrackedsection
e
2
= lessertensilestrainattheboundariesofthesectionconsidered,assessedonthe
basisofacrackedsection
Wherethespacingofthebondedreinforcementexceeds5(c+f/2)(seeFigure13.1)orwhere
thereisnobondedreinforcementwithinthetensionzone,anupperboundtothecrackwidth
maybefoundbyassumingamaximumcrackspacing:
r,max
=1.3()
Wheretheanglebetweentheaxesofprincipalstressandthedirectionofthereinforcement,for
membersreinforcedintwoorthogonaldirections,issignificant(>15°),thenthecrackspacing
r,max
maybecalculatedfromthefollowingexpression:
r,max
=1/(cosy/
r,max,y
+siny/
r,max,z
)
where
y = anglebetweenthereinforcementinthedirectionandthedirectionofthe
principaltensilestress

r,max,y
= crackspacingcalculatedinthey-direction

r,max,z
= crackspacingcalculatedinthez-direction
Alimitingcalculatedcrackwidth
max
,takingaccountoftheproposedfunctionandnatureof
thestructureandthecostsoflimitingcracking,shouldbeestablished.Duetotherandomnature
ofthecrackingphenomenon,actualcrackwidthscannot be predicted.However,ifthecrack
widths calculated inaccordancewith the modelsgivenin BS EN 1992-2arelimited to the
valuesgiveninTable13.1,theperformanceofthestructureisunlikelytobeimpaired.
The decompression limit requires that all concrete within a certain distance of bonded
tendons or their ducts should remain in compression under the specified loading. The
distancewithinwhichallconcreteshouldremainincompressionshouldbetakenasthevalue
of
min,dur
.WherethemosttensilefaceofasectionisnotsubjecttoXDorXSexposurebut
another face is, the decompressionlimit shouldrequire all tendons within 100 mm of a
surfacesubjecttoXDorXSexposuretohaveadepth
min,dur
ofconcretein compression
betweenthemandsurfacessubjecttoXDorXSexposure.
Sincethedecompressionlimitof100mmislikelytobegreaterthanthecoverrequiredfor
durability,thisintroducesananomaly.Forexample,only50mmofconcreteincompression
might be deemed adequate to protect the tendons, whereas 60 mm of concrete in
compressionplus40mmnotincompressionwouldnot,whichisclearlyillogical.Changing
thedistancefromtherecommendedvalueof100mmtothecoverrequiredfordurability,
min,dur,
ismorelogical.
In some situations, such as structures cast against the ground,
nom
 will be significantly
greaterthanthecoverrequiredfordurability.Wheretherearenoappearancerequirements
itisreasonabletodeterminethecrackwidthatthecoverrequiredfordurabilityandverify
thatitdoesnotexceedtherelevantmaximumcrackwidth.Thismaybedonebymultiplying
thecrackwidthdeterminedatthesurfaceby(
min,dur,
+D
dev
)/
nom
togivethecrackwidth
at the cover required for durability, and verifying that it is not greater than
max
. This
approach assumes that the crack width varies linearly from zero at the bar. Given the
accuracyofcrackcalculationmethodsthissimplificationisconsideredreasonable.
BS EN 1992-2
NA. NA.2.2
BS EN 1992-2
7.3.1(105) & NA
BS EN 1992-1-1
Exp. (7.14)
PD 6687-2
8.2.1b)
PD 6687-2
8.2.2
79
Serviceability
13.4
Table 13.1
Recommended values of w
max
and relevant combination rules
Exposure class
a
Reinforced members and
prestressed members without
bonded tendons
Prestressed members with bonded
tendons
Quasi-permanent load
combination
b
(mm)
Frequent load combination
b
(mm)
X0, XC1
0.3
c
0.2
XC2, XC3, XC4
0.3
0.2
d
XD1, XD2, XD3
XS1, XS2, XS3
0.3
0.2
e
anddecompression
Key
a
Theexposureclassconsidered,includingattransfer,appliestothemostsevereexposurethesurface
willbesubjecttoinservice.
b
Forthecrackwidthchecksundercombinationswhichincludetemperaturedistribution,theresulting
memberforcesshouldbecalculatedusinggrosssectionconcretepropertiesandself-equilibrating
thermalstresseswithinasectionmaybeignored.
cForX0,XC1exposureclasses,crackwidthhasnoinfluenceondurabilityandthislimitissetto
guaranteeacceptableappearance.Intheabsenceofappearanceconditionsthislimitmayberelaxed.
dFortheseexposureclasses,inaddition,decompressionshouldbecheckedunderthequasipermanent
combinationofloads.
e
0.2appliestothepartsofthememberthatdonothavetobecheckedfordecompression.
Control of cracking
WheretheminimumreinforcementgivenbySection13.5isprovided,crackwidthsareunlikely
tobeexcessiveif:
Forcrackingcausedpredominantlybyrestraint,thebarsizesgiveninTable13.2arenot
exceededwherethesteelstressisthevalueobtainedimmediatelyaftercracking(i.e.s
s
in
Section13.5).
Forcrackscausedmainlybyloading,eithertheprovisionsofTable13.2ortheprovisionsof
Table13.3arecompliedwith.Thesteelstressshouldbecalculatedonthebasisofacracked
sectionundertherelevantcombinationofactions.
Forpre-tensionedconcrete,wherecrackcontrolismainlyprovidedbytendonswithdirectbond,
Tables13.2and13.3maybeusedwithastressequaltothetotalstressminusprestress.For
post-tensionedconcrete,wherecrackcontrolisprovidedmainlybyordinaryreinforcement,the
tablesmaybeusedwiththestressinthisreinforcementcalculatedwiththeeffectofprestressing
forcesincluded.
Themaximumbardiametershouldbemodifiedasfollows:
Bending(atleastpartofsectionincompression):
f
s
= f*
s
(f
ct,eff
/2.9)
k
c
h
cr
2 (h – d)
Tension(uniformaxialtension):
f
s
= f*
s
(f
ct,eff
/2.9) h
cr
/(8(h – d))
where
f
s
= adjustedmaximumbardiameter
f
s
= maximumbarsizegivenintheTable13.2
= overalldepthofthesection
cr
 = depthofthetensilezoneimmediatelypriortocracking,consideringthe
characteristicvaluesofprestressandaxialforcesunderthequasi-permanent
combinationofactions
= effectivedepthtothecentroidoftheouterlayerofreinforcement
BS EN 1992-2 &
NA, table NA.2
BS EN 1992-1-1
7.3.3(2)
80
Whereallthesectionisundertension–istheminimumdistancefromthecentroidofthe
layerof reinforcementto the face ofthe concrete(consider eachface wherethe bar is not
placedsymmetrically).
Table 13.2
Maximum bar diameters for crack control
Steel stress (MPa) Maximum bar size (mm) for crack widths of
0.4 mm 0.3 mm 0.2 mm
160 40 32 25
200 32 25 16
240 20 16 12
280 16 12 8
320 12 10 6
360 10 8 5
400 8 6 4
450 6 5 —
Table 13.3
Maximum bar spacing for crack control
Steel stress (MPa) Maximum bar spacing (mm) for maximum crack widths of
0.4 mm 0.3 mm 0.2 mm
160 300 300 200
200 300 250 150
240 250 200 100
280 200 150 50
320 150 100 —
360 100 50 —
Minimum reinforcement areas of main bars
Ifcrackcontrolisrequired,aminimumamountofbondedreinforcementisrequiredtocontrol
crackinginareaswheretensionisexpected.Therequiredminimumareasofreinforcement
s,min
maybecalculatedasfollows.Inprofiledcross-sectionslikeT-beamsandboxgirders,minimum
reinforcementshouldbedeterminedfortheindividualpartsofthesection(webs,flanges).
s,min
=
c
ct,eff
ct
/s
s

where

ct
= areaofconcretewithintensilezone.Thetensilezoneisthatpartofthesection
whichiscalculatedtobeintensionjustbeforeformationofthefirstcrack
s
s
= absolutevalueofthemaximumstresspermittedinthereinforcement
immediatelyafterformationofthecrack.Thismaybetakenastheyieldstrength
ofthereinforcement,
yk
.Alowervaluemay,however,beneededtosatisfythe
crackwidthlimitsaccordingtothemaximumbarsizeorspacingindicatedin
Tables13.2and13.3.

ct,eff
 = meanvalueofthetensilestrengthoftheconcreteeffectiveatthetimewhenthe
cracksmayfirstbeexpectedtooccur.
=
ctm
orlower(
ctm
())ifcrackingisexpectedearlierthan28days

Aminimumvalueof2.9MPashouldbetaken
 = coefficientwhichallowsfortheeffectofnon-uniformself-equilibratingstresses,
whichleadtoareductionofrestraintforces
= 1.0forwebswith≤300mmorflangeswithwidthslessthan300mm,
intermediatevaluesmaybeinterpolated
13.5
BS EN 1992-1-1
table 7.3N
BS EN 1992-1-1
7.3.2(1)
BS EN 1992-2
7.3.2(102)
BS EN 1992-1-1
table 7.2N
BS EN 1992-1-1
Exp. (7.1)
BS EN 1992-2
7.3.2(105)
81
Serviceability
= 0.65forwebswith≥800mmorflangeswithwidthsgreaterthan800mm,
intermediatevaluesmaybeinterpolated
c
= coefficientwhichtakesaccountofthestressdistributionwithinthesection
immediatelypriortocrackingandofthechangeoftheleverarm:
= 1.0forpuretension.
= 0.4forpurebending.
= 0.4[1–(s
c
/(
1
(/*)
ct,eff
))]≤1forrectangularsectionsandwebsofbox
sectionsandT-sections.
= 0.9
cr
/(
ct
ct,eff
)≥0.5forflangesofboxsectionsandT-sections.
s
c
= meanstressoftheconcreteactingonthepartofthesectionunderconsideration.
=
Ed
/

Ed
= axialforceattheserviceabilitylimitstateactingonthepartofthecross-section
underconsideration(compressiveforcepositive).
Ed
shouldbedetermined
consideringthecharacteristicvaluesofprestressandaxialforcesunderthe
relevantcombinationofactions
* = MIN{;1.0}

1
= coefficientconsideringtheeffectsofaxialforcesonthestressdistribution:
= 1.5if
Ed
isacompressiveforce
= */if
Ed
isatensileforce

cr
= absolutevalueofthetensileforcewithintheflangeimmediatelypriortocracking
duetothecrackingmomentcalculatedwith
ct,eff
SeealsoSection15.2.1forasimplifiedmethodofcalculatingminimumareaofsteel.
Inflangedcross-sectionslikeT-beamsandboxgirders,thedivisionintopartsshouldbeasindicated
inFigure13.2.
s
c, web
s
c, flange
f
ct,eff
f
ct,eff
Flange Flange
Web
S
flange
S
m
S
web
Web Flange
a) Components b) Stresses
Figure 13.2
Example for a division of a flanged cross-section for analysis of cracking
Bondedtendonsinthetensionzonemaybeassumedtocontributetocrackcontrolwithina
distance≤150mmfromthecentreofthetendon.Thismaybetakenintoaccountbyincluding
thetermj
1
p
'
D
p
intheExpressionabovetogive:
s,min
=(
c
ct,eff
ct
–j
1
p
'
Ds
p
)/s
s
where

p
'
= areaofpre-orpost-tensionedtendonswithin
c,eff

c,eff
 = effectiveareaofconcreteintensionsurroundingthereinforcementor
prestressingtendonsofdepth,
c,ef

c,ef
= MIN{2.5();()/3;/2}(seeFigure13.3)
j
1
 = adjustedratioofbondstrengthtakingintoaccountthedifferentdiametersof
prestressingandreinforcingsteel
=(j f
s
/f
p
)
0.5
= j
0.5
ifonlyprestressingsteelisusedtocontrolcracking
j = ratioofbondstrengthofprestressingandreinforcingsteel,accordingto
Table13.4
BS EN 1992-2
fig. 7.101
BS EN 1992-1-1
7.3.2(3)
82
f
s
 = largestbardiameterofreinforcingsteel
f
p
 = equivalentdiameteroftendon
= 1.6
p
0.5
forbundles
= 1.75f
wire
forsingle7wirestrandswheref
wire
isthewirediameter
= 1.20f
wire
forsingle3wirestrandswheref
wire
isthewirediameter
Ds
p
= stressvariationinprestressingtendonsfromthestateofzerostrainofthe
concreteatthesamelevel
Level of steel centroid
Effective tension area, A
c,eff
Effective tension area, A
c,eff
Effective tension area for upper surface, A
ct,eff
Effective tension area for lower surface, A
cb,eff
e
2
= 0
e
2
= 0
a) Beam
b) Slab
c) Member in tension
e
1
e
1
e
2
e
1
h
c,ef
h
c,ef
h
c,ef
h
c,ef
h
h
d
h
d
d
x
d
x
Figure 13.3
Effective tension area (typical cases)
Inprestressedmembersnominimumreinforcementisrequiredinsectionswhere,underthe
characteristiccombination of loads and the characteristic valueof prestress, the concreteis
compressedortheabsolutevalueofthetensilestressintheconcreteisbelow
ct,eff
.
Table 13.4
Ratio of bond strength, j , between tendons and reinforcing steel
Prestressing steel
j
Pre-tensioned Bonded, post-tensioned
C50/60 C70/85
Smooth bars and wires
Notapplicable 0.3 0.15
Strands
0.6 0.5 0.25
Indented wires
0.7 0.6 0.30
Ribbed bars
0.8 0.7 0.35
Note
ForintermediatevaluesbetweenC50/60andC70/85interpolationmaybeused.
BS EN 1992-1-1
Fig 7.1
BS EN 1992-1-1
7.3.2 (4)
BS EN 1992-1-1
table 6.2
83
Serviceability
Control of deflection
The calculation method adopted shall represent the true behaviour of the structure under
relevantactionstoanaccuracyappropriatetotheobjectivesofthecalculation.
Memberswhicharenotexpectedtobeloadedabovethelevelwhichwouldcausethetensile
strengthoftheconcretetobeexceededanywherewithinthemembershouldbeconsideredto
beuncracked.Memberswhichareexpectedtocrack,butmaynotbefullycracked,willbehave
inamannerintermediatebetweentheuncrackedandfullycrackedconditionsand,formembers
subjected mainly to flexure, an adequate prediction of behaviour is given in the following
expression:
az a
II
(1za
I
where
a  deformationparameterconsideredwhichmaybe,forexample,astrain,a
curvature,orarotation.(Asasimplification,amayalsobetakenasadeflection
–seebelow)
a
I
a
II
 thevaluesoftheparametercalculatedfortheuncrackedandfullycracked
conditionsrespectively
z  distributioncoefficient(allowingfortensioningstiffeningatasection)
 1b(s
sr
/s
s
)
2
 0foruncrackedsections
b  coefficienttakingaccountoftheinfluenceofthedurationoftheloadingorof
repeatedloadingontheaveragestrain
 1.0forasingleshort-termloading
 0.5forsustainedloadsormanycyclesofrepeatedloading
s
s
 stressinthetensionreinforcementcalculatedonthebasisofacrackedsection
s
sr
 stressinthetensionreinforcementcalculatedonthebasisofacrackedsection
undertheloadingconditionscausingfirstcracking
Note:s
sr
s
s
maybereplacedby
cr
/forflexureor
cr
/forpuretension,where
cr
isthe
crackingmomentand
cr
isthecrackingforce.
Deformations due to loading may be assessed using the tensile strength and the effective
modulusofelasticityoftheconcrete.
Table3.1indicatestherangeoflikelyvaluesfortensilestrength.Ingeneral,thebestestimateof
thebehaviourwillbeobtainedif
ctm
isused.Whereitcanbeshownthattherearenoaxial
tensilestresses(e.g.thosecausedbyshrinkageorthermaleffects)theflexuraltensilestrength,
ctm,fl
,maybeused.
ctm,fl
MAX{(1.6/1000)
ctm
;
ctm
}
where
 = totalmemberdepthinmm

ctm
= meanaxialtensilestrengthfromTable3.1
Forloadswithadurationcausingcreep,thetotaldeformationincludingcreepmaybecalculated
byusinganeffectivemodulusofelasticityforconcreteaccordingtothefollowingExpression
c,eff

cm
1h(
0
))
where
h(
0
)=creepcoefficientrelevantfortheloadandtimeinterval(seeSection3.1.2)
Shrinkagecurvaturesmaybeassessedfromthefollowing:
1/
cs
=e
as
a
e
/
where
1/
cs
= curvatureduetoshrinkage
13.6
BS EN 1992-1-1
7.4.3(2)
BS EN 1992-1-1
7.4.3(3)
BS EN 1992-1-1
Exp. (7.18)
BS EN 1992-1-1
7.4.3(4)
BS EN 1992-1-1
3.1.8
BS EN 1992-1-1
7.4.3(5)
BS EN 1992-1-1
7.4.3(6)
84
e
cs
= freeshrinkagestrain(seeSection3.1.3)
 = firstmomentofareaofthereinforcementaboutthecentroidofthesection
 = secondmomentofareaofthesection
a
e
= effectivemodularratio
=
s
/
c,eff
andshouldbecalculatedfortheuncrackedconditionandthefullycrackedcondition,the
finalcurvaturebeingassessedusingtheExpressionforaabove.
Themostrigorousmethodofassessingdeflectionsusingthemethodgivenaboveistocompute
the curvatures at frequent sections alongthe memberand then calculate the deflection by
numerical integration. In mostcases it will be acceptable to computethe deflection twice,
assumingthewholemembertobeintheuncrackedandfullycrackedconditioninturn,and
theninterpolateusingtheExpressionforaabove.
BS EN 1992-1-1
7.4.3(7)
85
Detailing–generalrequirements
Detailing general requirements
General
Therules givenin this sectionapplyto ribbedreinforcement,welded mesh andprestressing
tendonsusedinstructuressubjectpredominantlytostaticloading.
Unlessotherwisestated,therulesforindividualbarsalsoapplyforbundlesofbarsforwhich
anequivalentdiameterf
n
=f(
b
)
0.5
shouldbeusedinthecalculations.InthisExpression,
b
isthenumberofbarsinthebundle.Avaluefor
b
shouldbelimitedtofourverticalbarsin
compressionandinlappedjoints,andtothreeinallothercases.Thevalueoff
n
shouldbe
lessthanorequalto55mm.
Thecleardistancebetween(andthecoverto)bundledbarsshouldbemeasuredfromthe
actualexternalcontourofthebundledbars.Barsareallowedtotouchoneanotheratlaps
andtheyneednotbetreatedasbundledbarsundertheseconditions.
Spacing of bars
Thespacingofbarsshouldbesuchthatconcretecanbeplacedandcompactedsatisfactorilyfor
thedevelopmentofbond.
Thecleardistancebetweenindividualparallelbarsorbetweenhorizontallayersofparallelbarsshould
notbelessthanthe
bardiameter,
theaggregatesize+
5mm,
or20mm,whicheveristhegreatest.
Wherebarsarepositionedinseparatehorizontallayers,thebarsineachlayershouldbelocated
verticallyaboveeachother.Thereshouldbesufficientspacebetweentheresultingcolumnsof
barstoallowaccessforvibratorstogivegoodcompactionoftheconcrete.
Mandrel sizes for bent bars
Thediametertowhichabarisbentshouldbesuchastoavoiddamagetothereinforcement
andcrushingofconcreteinsidethebendofthebar.Toavoiddamagetoreinforcementthe
mandrelsizeisasfollows:
4f,
forbardiameterf≤16mm
7f,
forbardiameterf>16mm
20f,
formeshbentafterweldingwheretransversebarisonorwithin4fofthebend.
Otherwise
4f,
or
7f,
asabove.WeldingmustcomplywithISO/FDIS17660-2
[
22
]
.
Themandreldiameterf
m
toavoidcrushingofconcreteinsidethebendneednotbecheckedif:
Anchorageofthebardoesnotrequirealengthmorethan5 fpasttheendofthebend;and
Thebarisnotpositionedatanedgeandthereisacrossbar(ofdiameter≥ f)insidethebend,and
Diametersnotedaboveareused.
Otherwisethefollowingminimummandreldiameterf
m,min
shouldbeused:
f
m,min
≥
bt
((1/
b
)+1/(2f))/
cd
where

bt
= tensileforceinthebaratthestartofthebendcausedbyultimateloads

b
= halfthecentretocentrespacingofbars(perpendiculartotheplaneofthe
bend).Forbarsadjacenttothefaceofthemember,
b
=cover+0.5f

cd
 =
0.85
ck
/
1.5
Thevalueof
cd
shouldnotbetakengreaterthanthatforconcreteclassC55/67
where

ck
 = characteristiccylinderstrength
14
14.1
14.2
14.3
BS EN 1992-1-1
8.1(1)
BS EN 1992-1-1
8.9.1(1) & (2)
BS EN 1992-1-1
8.9.1(3) & (4)
BS EN 1992-1-1
8.2
BS EN 1992-1-1
8.3(1) & (2)
BS EN 1992-1-1
table 8.1N & NA
BS EN 1992-1-1
8.3(3)
BS EN 1992-1-1
Exp. (8.1)
BS EN 1992-1-1
3.1.6(1) & NA to
BS EN 1992-2
86
Anchorage of bars
General
Allreinforcementshouldbesoanchoredthattheforcesinthemaresafelytransmittedtothe
surroundingconcretebybondwithoutcausingcracksorspalling.Thecommonmethodsof
anchorageoflongitudinalbarsandlinksareshowninFigures14.1and14.2.
a) Basic anchorage length l
b,rqd
, for any
shape measured along the centreline
b,rqd
f
bd
b) Equivalent anchorage length for
standard bend 90º a < 150º
where l
b,eq
= a
1
l
b,rqd
b,eq
≥5f
a
e) Welded transverse bar
where l
b,eq
= a
4
l
b,rqd
b,eq
≥5f
f
≥0.6f
c) Equivalent anchorage length for
standard hook
where l
b,eq
= a
1
l
b,rqd
b,eq
≥150º
≥5
f
d) Equivalent anchorage length for
standard loop
where l
b,eq
= a
1
l
b,rqd
b,eq
Key
bd
= designanchoragelength
b,req
= basicanchoragelength
b,eq
= equivalentanchoragelength
Figure 14.1
Methods of anchorage other than by a straight bar
c) Two welded
transverse bars
d) Single welded
transverse bar
ff ff
5f,but
≥50mm
10
f,but
≥70mm
≥0.7
f
≥2f
≥1.4f
≥10mm
≥10mm
≥20mm
≤50mm
Figure 14.2
Anchorage of links
14.4
14.4.1
BS EN 1992-1-1
8.4(1) & (2)
BS EN 1992-1-1
fig. 8.1
BS EN 1992-1-1
fig. 8.5
87
Detailing–generalrequirements
Design anchorage length l
bd
Thedesignanchoragelength
bd
is
bd
=(a
1
a
2
a
3
a
4
a
5
)
b,rqd
≥
b,min
where
a
1
= factordealingwiththeformofbarassumingadequatecover
=0.7forbentbarsintensionwhere
d
>3f,where
d
isdefinedinFigure14.3
=1.0otherwiseforbarsintension
=1.0forbarsincompression
a
2
= factordealingwitheffectofconcreteminimumcover
=1–0.15(
d
–f)/f≥0.7forstraightbarsintensionbut≤1.0
=1–0.15(
d
–3f)/f≥0.7forbentbarsintensionbut≤1.0
=1.0otherwiseforbarsintension
=1.0forbarsincompression
a
3
= factordealingwitheffectofconfinementbytransversereinforcement
=1.0generally
a
4
= factordealingwiththeeffectofinfluenceofweldedtransversebars
=0.7foraweldedtransversebarconformingwithFigure14.1e)
=1.0otherwise
a
5
= factordealingwiththeeffectofpressuretransversetotheplaneofsplitting
alongthedesignanchoragelength
=1.0generally

b,rqd
= basicanchoragelength(seeSection14.4.3)

b,min
= theminimumanchoragelength
≥ MAX{0.3
b,rqd
;10f;100mm}intensionbars;and
≥ MAX{0.6
b,rqd
;10f;100mm}incompressionbars.
Theproduct(a
2
a
3
a
5
) 0.7
Figure 14.3
Values of
c
d
for beams
and slabs
a) Straight bars
c
d
= minimum of a/2, c or c
1
b) Bent or hooked bars
c
d
= minimum of a/2 or c
1
1
1
Note
and
1
aretakentobenominalcovers
Basic anchorage length l
b,rqd
b,rqd
 =basicanchoragelengthrequired=(f/4)(s
sd
/
bd
)
where
f = diameterofthebar
s
sd
= designstressinthebaratthepositionfromwheretheanchorageismeasured

bd
= ultimatebondstress(seeSection14.5)
Theanchoragelengthshouldbemeasuredalongthecentrelineofthebarinbentbars.
14.4.2
14.4.3
BS EN 1992-1-1
8.4.4(1) & table 8.2
BS EN 1992-1-1
fig. 8.3
BS EN 1992-1-1
8.4.3
88
Equivalent anchorage length l
b,eq
Asasimplification
FortheshapesshowninFigure14.1b)tod)anequivalentanchoragelength
b,eq
maybe
usedwhere
b,eq
=a
1
b,rqd
.
ForthearrangementshowninFigure14.1e)
b,eq
=a
4
b,req
.
Ultimate bond stress
Theultimatebondstress,
bd
,forribbedbarsmaybetakenas(seealsoTable14.1)
bd
=2.25n
1
n
2
ctd

where
n
1
= coefficientrelatedtothequalityofthebondconditionandthepositionofthebar
duringconcreting
= 1.0for‘good’bondconditions(seeFigure14.4fordefinition)
= 0.7forallothercasesandforbarsinstructuralelementsbuiltusingslipforms
n
2
= coefficientrelatedtobardiameter
= 1.0forbardiameter≤32mm
= (132–f)/100forbardiameter>32mm

ctd
= (a
ct
ctk,0.05
/g
C
)isthedesignvalueoftensilestrengthusingthevalueof
ctk,0.05
obtainedfromTable3.1,a
ct
=
1.0
andg
C
=
1.5
.
Duetothebrittlenessofhigher
strengthconcrete
ctk,0.05
shouldbelimitedheretothevalueforC60/75,unlessit
canbeverifiedthattheaveragebondstrengthincreasesabovethislimit
Directionofconcreting
Directionofconcreting
Directionofconcreting
Directionofconcreting
Key
b) h 250 mm d) h > 600 mm
300
c)
h > 250 mm
250
a) 45º
a 90º
a
‘good’bondconditions
‘poor’bondconditions
Figure 14.4
Description of bond conditions
14.4.4
14.5
BS EN 1992-1-1
8.4.4(2)
BS EN 1992-1-1
8.4.2(2)
BS EN 1992-2
3.1.6(102) & NA
BS EN 1992-1-1
fig. 8.2
89
Detailing–generalrequirements
Table 14.1
Design bond stress for different bond conditions
Design bond stress f
bd
(N/mm
2
)
C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 C55/67 C60/75
Good bond &
f 32 mm
2.7 3.0 3.3 3.8 4.1 4.4 4.5 4.7
Good bond &
f = 40 mm
2.5 2.8 3.0 3.5 3.7 4.0 4.1 4.3
Poor bond &
f 32 mm
1.9 2.1 2.3 2.6 2.8 3.0 3.2 3.3
Poor bond &
f = 40 mm
1.7 1.9 2.1 2.4 2.6 2.8 2.9 3.0
Anchorage of tendons at ULS
The anchorage of tendons should be checked in sections where the concrete tensile stress
exceeds
ctk,0.05
(
ctk,0.05
 should not exceed the value for classC60/75 concrete).The total
anchoragelengthforatendonwithastresss
pd
is:
bpd
=
pt2
+(a
2
f(s
pd
–s
pm
,
)/
bpd
)
where
pt2
=1.2(a
1
a
2
fs
pm,0
/
bpt
)
where
a
1
= 1.0forgradualreleaseofprestressand1.25forsuddenrelease
s
pm,0
= stressinthetendonjustafterrelease
bpt
= n
p1
n
1
ctd
()
n
p1
= 2.7forindentedwiresand3.2for3-and7-wirestrands
n
1
= 1.0forgoodbondconditionsand0.7otherwise
ctd
() = designtensilevalueofstrengthatthetimeofrelease
=
1.0
0.7
ctm
()/
1.5
ctm
() = (b
cc
())
a
ctm
b
cc
() = coefficientwhichdependsontheageofloading
=
exp
{
s
[
1–(
0.5
]}
28
t
)
= coefficientwhichdependsontypeofcement(seeSection3.1.2)
= 0.20forcementstrengthclassesCEM42.5R,CEM52.5NandCEM52.5R(ClassR)
= 0.25forcementstrengthclassesCEM32.5R,CEM42.5N(ClassN)
= 0.38forcementstrengthclassCEM32.5(ClassS)
= ageofconcreteindays
ctm
= meanvalueofaxialtensilestrengthofconcrete(seeTable3.1)
a =1for<28
=2/3for≥28
a
2
= 0.25forcirculartendonsand0.19for3-and7-wirestrands
f = nominaldiameterofthetendon
s
pd
= tendonstresscorrespondingtotheforcecalculatedforacrackedsection
s
pm,
 = prestressafteralllosses
bpd
 = n
p2
n
1
ctd
,wheren
p2
=1.4forindentedwiresand1.2for7-wirestrands.
n
1
isdescribedinSection14.5
14.6
BS EN 1992-1-1
8.10.2.3
BS EN 1992-1-1
Exp. (8.21)
90
Anchorage of tendons at transfer of prestress
Thebasicvalueofthetransmissionlengthatthereleaseoftendons,
pt
,isgivenby:
pt
=a
1
a
2
fs
pm,0
/
bpt
where
a
1
= 1.0forgradualrelease
= 1.25forsuddenrelease
a
2
= 0.25fortendonswithcircularcross-section
= 0.19for3-and7-wirestrands
f = nominaldiameteroftendon
s
pm,0
= tendonstressjustafterrelease
bpt
= bondstress
= n
p1
n
1
ctd
()
where
n
p1
= coefficientthattakesintoaccountthetypeoftendonandthebond
situationatrelease
= 2.7forindentedwires
= 3.2for3-and7-wirestrands
n
1
=1.0forgoodbondconditions
= 0.7otherwise,unlessahighervaluecanbejustifiedwithregardtospecial
circumstancesinexecution

ctd
() = designtensilevalueofstrengthattimeofrelease(seeSection14.6)
Thedesignvalueofthetransmissionlengthshouldbetakenasthelessfavourableoftwovalues,
dependingonthedesignsituation:
pt1
=0.8
pt
or
pt2
=1.2
pt
Normallythelowervalueisusedforverificationsoflocalstressesatrelease,thehighervaluefor
ultimatelimitstates(shear,anchorageetc.).
Laps
General
Forces are transmitted from one bar to another by lapping, welding or using mechanical
devices.
Lapsbetweenbarsshouldnormallybestaggeredandnotlocatedinareasofhighmoments/
forces.Allbarsincompressionandsecondaryreinforcementmaybelappedatoneplace.
Lapping bars
LapsofbarsshouldbearrangedasshowninFigure14.5.
Thedesignlaplength
0
is:
0
=a
1
a
2
a
3
a
4
a
5
a
6
b,rqd
≥
0,min
where
a
6
=(r
1
/25)
0.5
.1<a
6
<1.5(seeTable14.2)
r
1
= percentageofreinforcementlappedwithin0.65
0
fromthecentrelineofthelap
beingconsidered
0,min
≥ MAX{0.3a
6
b,rqd
;15h;200mm}
a
1
,a
2
,a
3
,a
4
anda
5
aredescribedinSection14.4.2
14.7
14.8
14.8.1
14.8.2
BS EN 1992-1-1
8.7
BS EN 1992-1-1
8.7.2(2) & 8.7.3
BS EN 1992-1-1
Exp. (8.10)
BS EN 1992-1-1
8.10.2.2(2)
BS EN 1992-1-1
Exp. (8.16)
91
Detailing–generalrequirements
Table 14.2
Values of coefficient a
6
r
1
, % lapped bars relative to
total cross-sectional area
< 25% 33% 50% > 50%
a
6
1.0 1.15 1.4 1.5
s
s
s
s
s
s
0
≥0.3
0
f
≤50mm
≥20mm
≤4
f
≥2f
Figure 14.5
Arranging adjacent lapping bars
Lapping fabric
LapsoffabricshouldbearrangedasshowninFigure14.6.
Whenfabricreinforcementislappedbylayering,thefollowingshouldbenoted:
Calculatedstressinthelappedreinforcementshouldnotbemorethan80%ofthe
designstrength;ifnot,themomentofresistanceshouldbebasedontheeffectivedepth
tothelayerfurthestfromthetensionfaceandthecalculatedsteelstressshouldbe
increasedby25%forthepurposesofcrackcontrol.
Permissiblepercentageoffabricmainreinforcementthatmaybelappedinanysectionis:
100%if(
s
/)≤1200mm
2
/m(whereisthespacingofbars)
60%if
s
/>1200mm
2
/m.
Allsecondaryreinforcementmaybelappedatthesamelocationandtheminimumlap
length
0,min
forlayeredfabricisasfollows:
≥150mmforf≤6mm
≥250mmfor6mm<f<8.5mm
≥350mmfor8.5mm<f<12mm
Thereshouldgenerallybeatleasttwobarpitcheswithinthelaplength.Thiscouldbereduced
toonebarpitchforf≤6mm.
Figure 14.6
Lapping of
welded fabric
a) Intermeshed fabric (longitudinal section)
b) Layered fabric (longitudinal section)
s
s
s
s
0
0
14.8.3
BS EN 1992-1-1
8.7.5
BS EN 1992-1-1
fig. 8.10
BS EN 1992-1-1
8.7.5.1(7)
8.7.5.2(1)
BS EN 1992-1-1
fig. 8.7
92
14.8.4
14.8.5
Transverse reinforcement
Transversereinforcementisrequiredinthelapzonetoresisttransversetensionforces.
Wherethediameterofthelappedbarislessthan20mmorthepercentageofreinforcement
lappedatanysectionislessthan25%,thenanytransversereinforcementorlinksnecessaryfor
other purposes may be deemed sufficient for the transverse tensile forces without further
justification.
Whentheaboveconditionsdonotapply,transversereinforcementshouldbeprovidedasshown
inFigure14.7.Wheremorethan50%ofbarsarelappedatonesectionandthespacingbetween
adjacentlaps(dimensioninFigure14.5)<10f,thetransversereinforcementshouldbeinthe
formoflinksorUbarsanchoredintothebodyofthesection.
InFigure14.7,thetotalareaoftransversereinforcementatlapsS
st
>
s
ofonelappedbar.
Figure 14.7
Transverse
reinforcement for
lapped splices
a) Bars in tension
b) Bars in compression
s
s
s
s
0
0
0
/3
0
/3
0
/3
0
/3
S
st
/2
S
st
/2
S
st
/2
S
st
/2
4
f 4f
≤150mm
≤150mm
Lapping large bars
Forbarslargerthan
40mm
indiameterthefollowingadditionalrequirementsapply:
Barsshouldbeanchoredusingmechanicaldevices.Asanalternativetheymaybeanchored
asstraightbars,butlinksshouldbeprovidedasconfiningreinforcement.
Barsshouldnotbelappedexceptinsectionswithaminimumdimensionof1morwhere
thestressisnotgreaterthan80%oftheultimatestrength.
Intheabsenceoftransversecompression,transversereinforcement,inadditiontothat
requiredforotherpurposes,shouldbeprovidedintheanchoragezoneatspacingnot
exceeding5timesthediameterofthelongitudinalbar.Thearrangementshouldcomply
withFigure14.8.
BS EN 1992-1-1
fig. 8.9
BS EN 1992-1-1
8.8
BS EN 1992-1-1
8.7.4
93
Detailing–generalrequirements
BS EN 1992-1-1
fig. 8.11
Figure 14.8
Additional
reinforcement in
an anchorage for
large diameter
bars where there
is no transverse
compression
Anchoredbar Continuingbar
a)
n
1
= 1, n
2
= 2 b) n
1
= 2, n
2
= 2
S
sh
≥0.5
s1
S
sh
≥0.25
s1
S
sv
≥0.5
s1
S
sv
≥0.5
s1
s1
s1
Note
1
=numberoflayers,
2
=numberofbars
94
15
15.1
15.2
15.2.1
Detailing particular requirements
General
Thissectiongivesparticularrequirementsfordetailingofstructuralelements.Thesearein
additiontothoseoutlinedinSections13and14.
Beams
Longitudinal bars
Theareaoflongitudinalreinforcementshallnotbetakenaslessthan
s,min
s,min
=0.26(
ctm
/
yk
)
t
≥0.0013
t
where
ctm
 =meanaxialtensilestrengthofconcrete(seeTable3.1)

yk
= characteristicyieldstrengthofreinforcement

t
=meanwidthofthetensionzone;foraT-beamwiththeflangeincompression,only
thewidthofthewebistakenintoaccountincalculatingthevalue
t
 =effectivedepth
Valuesof
s,min
forvariousstrengthclassesareprovidedinTable15.1
Thecross-sectionalareaoftensionorcompressionreinforcementis
0.04
c
outsidelaplocations.
Any compression longitudinal reinforcement which is included in the resistance calculation
shouldbeheldbytransversereinforcementwithspacingnotgreaterthan15timesthediameter
ofthelongitudinalbar.
Wherethedesignofasectionhasincludedthecontributionofanylongitudinalcompression
reinforcement in the resistance calculation, such longitudinal compression reinforcement
should be effectively restrained by transverse reinforcement. Effective restraint may be
achievedbysatisfyingallofthefollowingconditions.
Linksshouldbesoarrangedthateverycornerandalternatebarorgroupinanouter
layerofcompressionreinforcementisheldinplacebyalinkanchoredinaccordance
withFigure14.2a)orb).
Allothercompressionreinforcementshouldbewithin150mmofabarheldinplaceby
alink.
Theminimumsizeofthetransversereinforcementandlinks,wherenecessary,shouldbe
notlessthan6mmoronequarterofthediameterofthelongitudinalbars,whicheveris
greater.
Table 15.1
Minimum area of longitudinal reinforcement as a proportion of b
t
d
Strength
class
C25/30 C28/35 C30/37 C32/40 C35/45 C40/50 C45/55 C50/60 C55/67 C60/75 C70/85
A
s,min
as a % of
b
t
d
0.13 0.14 0.15 0.16 0.17 0.18 0.20 0.21 0.22 0.23 0.24
Formembers prestressedwith permanently unbonded tendons or with external prestressing
cables,itshouldbeverifiedthattheultimatebendingcapacityislargerthantheflexuralcracking
moment.Acapacityof1.15timesthecrackingmomentissufficient.
BS EN 1992-1-1
9.1
BS EN 1992-1-1
9.2.1.1
BS EN 1992-1-1
9.2.1.2(3)
PD 6687-2
10.2
BS EN 1992-1-1
9.2.1.1(4)
95
Detailing–particularrequirements
Curtailment
Sufficientreinforcementshouldbeprovidedatallsectionstoresisttheenvelopeoftheacting
tensileforce.Theresistanceofbarswithintheiranchoragelengthsmaybetakenintoaccount
assuminglinearvariationofforce.
Thelongitudinaltensileforcesinthebarsincludethosearisingfrombendingmomentsand
thosefromthetrussmodelforshear.AsmaybeseenfromFigure15.1,thoseforcesfromthe
trussmodelforshearmaybeaccommodatedbydisplacingthelocationwhereabarisno
longerrequiredforbendingmomentbyadistanceof
l
where
l
=(coty–cota)/2
where
y = strutangleusedforshearcalculations(seeFigure7.3)
a =angleoftheshearreinforcementtothelongitudinalaxis(seeFigure7.3)
Forallbuthighshearcoty=2.5;forverticallinkscota=0;sogenerally
l
=1.25.
Hoggingreinforcement
Envelopeof
Ed
/+
Ed
Actingtensileforce
s
Resistingtensileforce
Rs
Saggingreinforcement
bd
bd
bd
bd
bd
bd
bd
bd
l
l
D
td
D
td
Figure 15.1
Illustration of the curtailment of longitudinal reinforcement, taking into account the effect of
inclined cracks and the resistance of reinforcement within anchorage lengths
Top reinforcement in end supports
In monolithic construction, (even when simple supports have been assumed in design) the
sectionatsupportsshouldbedesignedforbendingmomentarisingfrompartialfixityofatleast
25%
ofthemaximumbendingdesignmomentinspan.
15.2.2
15.2.3
BS EN 1992-1-1
fig. 9.2
BS EN 1992-1-1
9.2.1.3
BS EN 1992-1-1
9.2.1.2(1) & NA
96
Bottom reinforcement in end supports
Theareaofbottomreinforcementprovidedatendswithlittleornofixityassumedinthedesign
should be at least
25%
 of the area of the steel provided in the span.The bars should be
anchoredtoresistaforce,
Ed
,of
Ed
=(|
Ed
|
l
/)+
Ed
where
|
Ed
|= absolutedesignvalueofshearforce

Ed
= axialforce,

l
,isasdefinedinSection15.2.2
Theanchorageismeasuredfromthelineofcontactbetweenthebeamandthesupport.
Intermediate supports
Atintermediatesupportsofcontinuousbeams,thetotalareaoftensionreinforcement,
s
,ofa
flangedcross-section should be spreadover the effectivewidth of the flange (as definedin
Figure15.2).Partofitmaybeconcentratedoverthewebwidth.
b
eff
b
eff1
b
eff2
A
s
b
w
h
f
Figure 15.2
Placing of tension reinforcement in flanged cross-section
Shear reinforcement
Whereacombinationoflinksandbentupbarsisusedasshearreinforcement,atleast
50%
ofthereinforcementrequiredshouldbeintheformoflinks.Thelongitudinalspacingofshear
assembliesshouldnotexceed
0.75(1+cota)
,and spacing ofbent-upbarsshouldnot
exceed
0.6(1+cota)
where a is the inclination of the shear reinforcement to the
longitudinalaxisofthebeam.Thetransversespacingofthelegsofshearlinksshouldnotexceed
0.75≤600mm
.
A minimum area of shear reinforcement should be provided to satisfy the following
Expression:
sw
/(
w
sina)≥0.08
ck
0.5
/
yk
where
= longitudinalspacingoftheshearreinforcement
w
= breadthofthewebmember
a = angleoftheshearreinforcementtothelongitudinalaxisofthemember.
Forverticallinkssina=1.0.
15.2.4
15.2.5
15.2.6
BS EN 1992-1-1
9.2.1.2(2)
BS EN 1992-1-1
fig. 9.1
BS EN 1992-1-1
9.2.2(4),(6)&(7)
BS EN 1992-1-1
9.2.2(5) & NA
97
Detailing–particularrequirements
15.2.7
15.2.8
Torsion reinforcement
Wherelinksarerequiredfortorsion,theyshouldcomplywiththeanchorageshowninFigure
15.3.Themaximumlongitudinalspacingofthetorsionlinks
l,max
shouldbe:
l,max
≤MIN{/8;0.75(1+cota);;}
where
 = circumferenceofouteredgeofeffectivecross-section(seeFigure9.1)
 = effectivedepthofbeam
 = heightofbeam
 = breadthofbeam
Thelongitudinalbarsrequiredfortorsionshouldbearrangedsuchthatthereisatleastonebar
ateachcornerwiththeothersbeingdistributeduniformlyaroundtheinnerperipheryofthe
linksataspacingnotexceeding350mm.
a1) a2) a3)
a) Recommended shapes
b) Shape not recommended
Note
Thesecondalternativefora2)shouldhaveafullla
p
len
g
thalon
g
theto
p
or
Figure 15.3
Examples of shapes for torsion links
Indirect supports
Whereabeamissupportedbyabeam,insteadofawallorcolumn,reinforcementshouldbe
providedto resist themutual reaction.Thisreinforcement isin additionto thatrequiredfor
other reasons. The supporting reinforcement between two beams should consist of links
surroundingtheprincipalreinforcementofthesupportingmember.Someoftheselinksmaybe
distributedoutsidethevolumeofconcretecommontothetwobeams.SeeFigure15.4.
Figure 15.4
Plan section
showing
supporting
reinforcement in
the intersection
zone of two beams
Supportedbeamwith
height
2
(
1
≥
2
)
Supportingbeam
withheight
1
≤
2
/3
≤
2
/2
≤
1
/3
≤
1
/2
BS EN 1992-1-1
fig. 9.6
BS EN 1992-1-1
9.25
BS EN 1992-1-1
fig. 9.7
BS EN 1992-1-1
9.2.3
98
15.3
15.3.1
15.3.2
15.3.3
15.3.4
15.4
15.4.1
15.4.2
One-way and two-way spanning slabs
Main (principal) reinforcement
TheminimumandmaximumsteelpercentagesinthemaindirectioninSection15.2.1apply.
Thespacing ofmainreinforcementshouldnotexceed
3
(but notgreaterthan
400mm
),
whereisthetotaldepthoftheslab.Inareaswithconcentratedloadsorareasofmaximum
momenttheseprovisionsbecomerespectively
2
and
≤250mm
.
Secondary (distribution) reinforcement
Secondary reinforcement of not less than 20% of the principal reinforcement should be
providedinone-wayslabs.
The spacing of secondary reinforcement should not exceed
3.5
(but not greater than
450mm
).Inareaswithconcentratedloads,orinareasofmaximummoment,theseprovisions
becomerespectively
3
(butnotgreaterthan
400mm
).
Reinforcement in slabs near supports
Insimplysupportedslabs,half thecalculatedspan reinforcementshould continue uptothe
supportandbeanchoredthereininaccordancewithSection14.4.2.
Wherepartialfixityoccursalonganedgeofaslabbutisnottakenintoaccountintheanalysis,
thetopreinforcementshouldbecapableofresistingatleast25%ofthemaximummomentin
the adjacent span.This reinforcement should extend at least 0.2 times the length of the
adjacentspanmeasuredfromthefaceofthesupport.Atanendsupportthemomenttobe
resistedmaybereducedto15%ofthemaximummomentintheadjacentspan.
Shear reinforcement
Aslabinwhichshearreinforcementisprovidedshouldhaveadepthofatleast200mm.
Whereshearreinforcementisprovidedtherulesforbeamsmaybefollowed.
Flat slabs
Details at internal columns
Atinternalcolumns,unlessrigorousserviceabilitycalculationsarecarriedout,topreinforcement
withanareaof0.5
t
shouldbeplacedoverthecolumninawidthequaltothesumof0.125
timesthepanelwidthon either sideofthecolumn.
t
representstheareaofreinforcement
requiredtoresistfullnegativemomentfromthesumofthetwohalfpanelsoneachsideofthe
column. Bottombars (≥ 2 bars)in eachorthogonaldirection should be providedatinternal
columnsandthisreinforcementshouldpassthroughthecolumn.
Details at edge and corner columns
Reinforcementperpendiculartoafreeedgerequiredtotransmitbendingmomentsfromtheslabto
anedgeorcornercolumnshouldbeplacedwithintheeffectivewidth
e
showninFigure15.5.
BS EN 1992-1-1
9.3
BS EN 1992-1-1
9.3.1.1(1)
BS EN 1992-1-1
9.3.1.1(3) & NA
BS EN 1992-1-1
9.3.1.1(3) & NA
BS EN 1992-1-1
9.3.1.2
BS EN 1992-1-1
9.3.2
99
Detailing–particularrequirements
15.4.3
a) Edge column
b) Corner column
Note
isthedistancefromtheedgeoftheslabtotheinnermostfaceofthecolumn
Slabedge
Slabedge
Slabedge
canbe>
y
canbe>
x
andcanbe>
y
e
=
x
+
e
=+/2
y
y
x
x
Figure 15.5
Effective width, b
e
, of a flat slab
Punching shear reinforcement
Wherepunchingshearreinforcementisrequired,itshouldbeplacedbetweentheloadedarea /column
and
1.5
insidethecontrolperimeteratwhichreinforcementisnolongerrequired.
The spacing of linklegs around a perimetershould not exceed1.5 withinthe firstcontrol
perimeter(2fromtheloadedarea)andshouldnotexceed2forperimetersoutsidethefirst
controlperimeter(seeFigure15.6).
Outerperimeterofshear
reinforcement
Outercontrol
perimeter
out
≤1.5
a
1.5
0.5
≤0.75
t
r
A
A
Notes
1ForsectionA–A
refertoFigure15.7
2Nationalvalueshavebeenused
Key
a≤2.0if>2
fromcolumn
Figure 15.6
Layout of flat slab shear reinforcement
BS EN 1992-1-1
fig. 9.9
BS EN 1992-1-1
9.4.1(2) & (3)
BS EN 1992-1-1
9.4.2(1)
BS EN 1992-1-1
9.4.3
100
BS EN 1992-1-1
9.5.3(1) & NA
BS EN 1992-1-1
9.4.3(2)
BS EN 1992-1-1
9.5.2 & NA
15.5
15.5.1
15.5.2
Outercontrolperimeter
requiringshear
reinforcement
Outercontrolperimeter
notrequiring
shearreinforcement,
out
≤1.5
>0.3
≤0.5
r
≤0.75
Figure 15.7
Section A – A from Figure 15.6: spacing of punching shear reinforcing links
Theintentionistoprovideanevendistribution/densityofpunchingshearreinforcement
withinthezonewhereitisrequired(seeSection8.8).
Thecontrolperimeteratwhichshearreinforcementisnotrequired,
out
,shouldbecalculated
fromthefollowingExpression:
out
=b
Ed
/(
Rd,c
)
Theoutermostperimeterofshearreinforcementshouldbeplacednotgreaterthan
1.5
within
out
.
Whereshearreinforcementisrequired,theareaofalinkleg,
sw,min
isgivenbythefollowing
Expression:
sw,min
(1.5sina+cosa)/(
r
t
)≥0.08
ck
0.5
/
yk
where
r
and
t
=spacingofshearreinforcementinradialandtangentialdirectionsrespectively
(seeFigure15.6)
Columns
Longitudinal reinforcement
Longitudinalbarsshouldhaveadiameterofnotlessthan
12mm
.
Thetotalamountoflongitudinalreinforcementshouldnotbelessthan
s,min
:
s,min
≥MAX{0.1
Ed
/
yd
;0.002
c
}
where

Ed
= designaxialcompressionforce

yd
= designyieldstrengthofthereinforcement

c
=cross-sectionalareaofconcrete
Thearea oflongitudinalreinforcementshouldnot exceed
0.04
c
outsidelap locations.This
limitshouldbeincreasedto0.08
c
atlaps.
Transverse reinforcement (links)
Thediameterofthetransversereinforcement(links,loopsorhelicalspiralreinforcement)shouldnot
belessthan6mmoronequarterofthediameterofthelongitudinalbars,whicheverisgreater.
BS EN 1992-1-1
6.4.5(4) & NA
BS EN 1992-1-1
fig. 9.10
101
Detailing–particularrequirements
15.6
15.6.1
15.6.2
15.6.3
Thespacingofthetransversereinforcementalongthecolumnshouldnotexceed:
20timesthediameterofthelongitudinalbar,or
thelesserdimensionofthecolumn,or
400mm.
Themaximumspacingrequiredaboveshouldbereducedbyafactorof0.6:
Insectionswithinadistanceequaltothelargerdimensionofthecolumncross-section
aboveandbelowabeamorslab.
Nearlappedjoints,ifthemaximumdiameterofthelongitudinalbarsisgreaterthan14mm.
Aminimumof3barsevenlyplacedinthelaplengthisrequired.
Wherethedirectionofthelongitudinalbarschanges,thespacingoftransversereinforcement
shouldbecalculatedtakingintoaccountthetransverseforcesinvolved.Theseeffectsmaybe
ignoredifthechangeofdirectionislessthanorequalto1in12.
Wherethedesignofasectionhasincludedthecontributionofanylongitudinalcompression
reinforcement in the resistance calculation, such longitudinal compression reinforcement
should be effectively restrained by transverse reinforcement. Effective restraint may be
achievedbysatisfyingallofthefollowingconditions:
Linksshouldbesoarrangedthateverycornerandalternatebarorgroupinanouter
layerofcompressionreinforcementisheldinplacebyalinkanchoredinaccordance
withFigure14.2a)orb).
Allothercompressionreinforcementshouldbewithin150mmofabarheldinplaceby
alink.
Theminimumsizeofthetransversereinforcementandlinks,wherenecessary,shouldbenot
lessthan6mmoronequarterofthediameterofthelongitudinalbars,whicheverisgreater.
Forcircularcolumns,wherethe longitudinalreinforcementis located roundtheperiphery
adequatelateralsupportisprovidedbyacirculartiepassingroundthebarsorgroups.
Walls
Vertical reinforcement
The area of vertical reinforcement should lie between
0.002
c
 and
0.04
c
 outside laps
locations.Thislimitmaybedoubledatlaps.
Thedistancebetweentwoadjacentbarsshouldnotexceed3timesthewallthicknessor400mm,
whicheveristhelesser.
Horizontal reinforcement
Horizontalreinforcementrunningparalleltothefacesofthewallshouldbeprovidedateach
surface. It should not be less than either
25%
 of the vertical reinforcement or
0.001
c
,
whicheverisgreater.
Thespacingbetweentwoadjacenthorizontalbarsshouldnotbegreaterthan400mm.
Transverse reinforcement
Inanypartofawallwherethetotalareaoftheverticalreinforcementinthetwofacesexceeds
0.02
c
,transversereinforcementintheformoflinksshouldbeprovidedinaccordancewiththerules
forcolumns.
BS EN 1992-1-1
9.5.3(3) & (4)
BS EN 1992-1-1
9.5.3(5)
PD 6687-2
10.2
BS EN 1992-1-1
9.6.2
& NA
BS EN 1992-1-1
9.6.3
& NA
BS EN 1992-1-1
9.6.4
102
PD 6687-2
fig. 6
15.7
Wherethe mainreinforcement is placed nearestto thewallfaces,transversereinforcement
should also beprovided in theform of links withat least 4 perm
2
ofwallarea.Transverse
reinforcementneednotbeprovidedwhereweldedmeshandbarsofdiameterf ≤16mmare
usedwithconcretecoverlargerthan2f.
Pile caps
Thedistancefromtheouteredgeofthepiletotheedgeofthepilecapshouldbesuchthatthe
tieforcescanbeproperlyanchored.Theexpecteddeviationofthepileonsiteshouldbetaken
intoaccount.
Reinforcement in a pile cap should be calculated either by using strut-and-tie or flexural
methodsasappropriate.Themaintensilereinforcementtoresisttheactioneffectsshouldbe
concentratedin stresszones between thetops of thepiles.The minimum diameterof bars
shouldbe
12mm
.
Wherethedistancebetweentheedgeofapileandapierislessthan2,someoftheshear
forceinthepilecapwillbetransmitteddirectlybetweenthepierandthepileviaastrutting
action.Thebasicpunchingperimetercannotbeconstructedwithoutencompassingapartof
thesupportasshownforthe2perimeterinFigure15.8.Insuchcases,itisrecommended
thatthetensionreinforcementisprovidedwithafullanchoragebeyondthelineofthepile
centresandthatthesheardesign takesinto considerationofthefollowinginadditionto
otherverificationsrequiredbyBSEN1992-2:2005.
Flexural shear on plane passing across the full width of the pile cap .Flexuralshear
shouldbecheckedonplanespassingacrossthefullwidthofthepilecap,suchasthe
flexuralshearplaneinFigure15.8.Shearenhancementshouldbetakenintoaccountbyan
increasetotheconcreteresistanceandnotbyareductionintheshearforce.Wherethe
spacingofthepilecentresislessthanorequalto3pilediameters,theshortshearspan
enhancementmaybeappliedoverthewholesection.Wherethespacingisgreaterthan
this,theenhancementmayonlybeappliedonstripsofwidth3pilediameterscentredon
eachpile.Theshearspana
v
shouldbetakenasthedistancebetweenthefaceofthe
columnorwallandtheneareredgeofthepilesplus20%ofthepilediameter.
Maximum permissible shear stress for punching
Themaximumpermissibleshear
stressatthefaceofthepilesandpiersshouldbecheckedinaccordancewithSection8.6.
Theshearperimeterforcornerpilesshouldbethepileperimeter,oraperimeterpassing
partiallyaroundthepileandextendingouttothefreeedgesofthepilecap,whicheverisless.
Punching resistance of corner piles.
Cornerpilesshouldbecheckedforpunching
resistanceata2perimeter(withoutsupportenhancement)ignoringthepresenceof
thepierorsupportandanyverticalreinforcementwithinit.
FurtherguidanceisgiveninHendy&Smith
[20]
.
Figure 15.8
Corner piles
within 2d
of a column base
2d perimeterFlexural shear plane
across cap
BS EN 1992-2
9.8.1 (103) & NA
PD 6687-2
10.4
103
Detailing–particularrequirements
15.8
15.9
15.9.1
15.9.2
15.9.3
15.9.4
Bored piles
BoredpilesshouldhavetheminimumreinforcementshowninTable15.2.Aminimumof
sixlongitudinalbarswithdiameterofatleast16mmshouldbeprovidedwithamaximum
spacing of 200 mm around the periphery of the pile.The detailing should comply with
BSEN1536
[
23
]
.
Table 15.2
Recommended minimum longitudinal reinforcement in cast-in-place bored piles
Area of cross-section of the pile (A
c
) A
c
0.5 m
2
0.5 m
2
1.0 m
2
A
c
> 1.0 m
2
Minimum area of longitudinal
reinforcement (A
s,bpmin
)
≥0.005
c
≥25cm
2
≥0.0025
c
Requirements for voided slabs
PD6687-2givesthefollowingguidanceforthedesignofvoidedslabbridgedeckscast
insitu.
Transverse shear
Theeffectsofcelldistortionduetotransverseshearshouldbeconsidered.Inparticular:
Theincreasedstressesinthetransversereinforcementandshearlinksduetocell
distortionresultingfromtransverseshearshouldbecalculatedbyanappropriateanalysis
(e.g.ananalysisbasedontheassumptionthatthetransverseactionactsinamanner
similartoaVierendeelframe).
Theresistanceoftheflangesandwebstothelocalmomentsproducedbythetransverse
sheareffectsshouldbeverified.
Thetopandbottomflangesshouldbedesignedassolidslabs,eachtocarryapartofthe
globaltransverseshearforceproportionaltotheflangethickness.
Longitudinal shear
Thelongitudinalribsbetweenthevoidsshouldbedesignedasbeamstoresisttheshear
forcesinthelongitudinaldirection,includinganyshearduetotorsionaleffects.
Punching
Punchingofwheelloadsthroughthetopflangeofdeckswithcircularvoidswillgenerally
needtobeconsideredforunusuallythinflanges,typicallythosewithvoiddiametertoslab
depthratiosofgreaterthan0.75.
Transverse reinforcement
Intheabsenceofadetailedanalysis,theminimumtransversereinforcementprovidedshould
beasfollows:
Inthepredominantlytensileflangeeither1500mm
2
/mor1%oftheminimumflange
section,whicheveristhelesser.
Inthepredominantlycompressiveflangeeither1000mm
2
/mor0.7%oftheminimum
flangesection,whicheveristhelesser.
BS EN 1992-1-1
9.85
BS EN 1992-1-1
table 9.6.N
PD 6687-2
10.5.2
PD 6687-2
10.5.3
PD 6687-2
10.5.4
PD 6687-2
10.5.5
104
BS EN 1992-1-1
fig. 8.14
BS EN 1992-1-1
fig. 8.15
BS EN 1992-1-1
8.10.1.3 (3)
PD 6687-2
9.2
15.10
15.10.1
15.10.2
The spacing of the transverse reinforcement should not exceed twice the minimum
flangethickness.
Inskewvoidedslabs,itispreferableforthetransversesteeltobeplacedperpendiculartothe
voidsandthelongitudinalsteeltobeplacedparalleltothevoids.
Prestressing
Arrangement of pre-tensioned tendons
Theminimumclearhorizontalandverticalspacingofindividualpre-tensionedtendonsshould
beinaccordancewiththatshowninFigure15.9.
f
d
g
≥2f
d
g
+5
≥2f
≥20 mm
f
≥40 mm
d
g
+5
f
≥50 mm
d
g
f
≥40 mm
Note
Wherefisthediameterof
pre-tensionedtendonand
g
isthe
maximumsizeofaggregate
Figure 15.9
Minimum clear spacing between pre-tensioned tendons
Arrangement of post-tensioned ducts
The minimum clear spacing of between ducts should be in accordance with that shown in
Figure15.10.
Intheabsenceoftheprovisionofreinforcementbetweenductstopreventsplittingofthe
concrete,designedinaccordancewiththestrutandtierules(seeSection10),theminimum
centretocentreductspacingsshouldbeasgiveninTable15.3.Thesespacingsaregivenin
BS5400-4:1990
[24]
.
f
d
g
≥2f
d
g
+5
≥2f
≥20 mm
f
≥40 mm
d
g
+5
f
≥50 mm
d
g
f
≥40 mm
Note
Wherefisthediameterof
post-tensionedductand
g
isthe
maximumsizeofaggregate
Figure 15.10
Minimum clear spacing between post-tensioned ducts
BS EN 1992-1-1
8.10.1.2(1)
105
Detailing–particularrequirements
Table 15.3
Minimum spacing of post-tensioning ducts (mm)
Radius of
curvature of
duct (m)
Duct internal diameter (mm)
19 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Tendon force (kN)
296 387 960 1337 1920 2640 3360 4320 5183 6019 7200 8640 9424 10336 11248 13200
2
110 140 350 485 700 960
4
55 70 175 245 350 480 610 785 940 Radiinot
normallyused
6
38 60 120 165 235 320 410 525 630 730 870 1045
8
90 125 175 240 305 395 470 545 655 785 855 940
10
80 100 140 195 245 315 375 440 525 630 685 750 815
12
160 205 265 315 365 435 525 570 625 680 800
14
140 175 225 270 315 375 450 490 535 585 785
16
160 195 235 275 330 395 430 470 510 600
18
180 210 245 290 350 380 420 455 535
20
200 220 265 315 345 375 410 480
22
240 285 310 340 370 435
24
265 285 315 340 400
26
260 280 300 320 370
28
345
30
340
40
38 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
Notes
1Thetendonforceshownisthemaximumnormallyavailableforthegivensizeofduct(takenas80%ofthecharacteristicstrengthofthetendon).
2Valueslessthan2×ductinternaldiameterarenotincluded.
Connections
Connections transmitting compression
Connections without bedding material (dry connections) should only be used where an
appropriatequalityof workmanshipcan be achieved.Theaveragebearingstressshouldnot
exceed0.3
cd
where
cd
=
0.85
ck
/
1.5
Intheabsenceofotherspecificationsthefollowingvaluecanbeusedforthebearingstrength
ofotherconnections
Rd
=
bed
≤0.85
cd
where

cd
=lowerofthedesignstrengthsforsupportedandsupportingmember
=
0.85
ck
/
1.5

bed
=designstrengthofthebeddingmaterial
15.11
15.11.1
PD 6687-2
table 3
BS EN 1992-1-1
10.9.4.3(3)
BS EN 1992-1-1
10.9.5.2(2)
106
15.12
BS EN 1992-1-1
10.9.5.1(4)
BS EN 1992-1-1
10.9.5.2(1)
BS EN 1992-1-1
10.9.4.7(1)
BS EN 1992-1-1
10.9.5.2(3)
BS EN 1992-1-1
fig. 10.6
Bearings
Bearingsshallbedesignedanddetailedtoensurecorrectpositioningtakingintoaccountthe
productionandassemblingdeviations.
Thenominallength,,ofasimplebearingasshowninFigure15.11maybecalculatedas:
++=
Da
2
2
aa
1
+
a
2
+
a
3
Da
3
2
where
1
= netbearinglengthwithregardtobearingstress
1
=
Ed
/(
1
Rd
)butnotlessthan
minimumvaluesinTable15.4
Ed
= designvalueofsupportreaction
1
= netbearingwidth(seebelow)
Rd
= designvalueofbearingstrength(seeSection15.11.1)
2
= distanceassumedineffectivebeyondouterendofsupportingmember,seeFigure
15.11andTable15.5
3
= similardistanceforsupportedmember,seeFigure15.11andTable15.6
D
2
 = allowancefordeviationsforthedistancebetweensupportingmembers,seeTable
15.7
D
3
 = allowancefordeviationsforthelengthofsupportingmember
=
n
/2500

n
= lengthofmember
Theeffectivebearinglength
1
iscontrolledbyadistance,,(seeFigure15.12)fromtheedgeof
therespectiveelements
where
i
=
i
+D
i
withhorizontalloopsorotherwiseend-anchoredbars
i
=
i
+D
i
+
i
withverticallybentbars
where
i
= concretecover
D
i
 = deviation
i
= bendradius
Ifmeasuresaretakentoobtainauniformdistributionofthebearingpressure,e.g.withmortar,
neopreneorsimilarpads,thedesignbearingwidth
1
maybetakenastheactualwidthofthe
bearing.Otherwise,andintheabsenceofamoreaccurateanalysis,
1
shouldnotbegreater
thanto600mm.
a) Elevation
b) Plan
Da
3
a
3
b
1
a
1
a
1
a
+
Da
2
a
2
+
Figure 15.11
Example of bearing with definitions
107
Detailing–particularrequirements
Figure 15.12
Example of
detailing
of reinforcement
in support
d
i
c
i
r
i
r
i
> a
1
+ Da
3
c
i
d
i
> a
1
+ Da
2
Table 15.4
Minimum value of
a
1
(mm)
Relative bearing stress, s
Ed
/ f
cd
0.15 0.15 – 0.4 >0.4
Line supports (floors, roofs)
25 30 40
Ribbed floors and purlins
55 70 80
Concentrated supports (beams)
90 110 140
Table 15.5
Distance a
2
(mm) assumed ineffective from outer end of supporting member
Support material and type Relative bearing stress, s
Ed
/ f
cd
0.15 0.15 – 0.4 >0.4
Steel line
 concentrated
0
5
0
10
10
15
Reinforced concrete
C30 line
concentrated
0
10
10
15
15
25
Plain concrete and reinforced concrete < C30 line
concentrated
10
15
15
25
25
35
Brickwork line
concentrated
10
20
15
25
a
a
Key
aConcretepadstoneshouldbeusedinthesecases
Table 15.6
Distance a
3
(mm) assumed ineffective beyond outer end of supported member
Detailing of reinforcement Support
Line Concentrated
Continuous bars over support (restrained or not) 0 0
Straight bars, horizontal, close to end of member 5 15,butnotlessthanendcover
Tendons or straight bars exposed at end of
member
5 15
Vertical loop reinforcement 15 Endcover+innerradiusofbending
BS EN 1992-1-1
fig.10.5
BS EN 1992-1-1
table 10.2
BS EN 1992-1-1
table 10.3
BS EN 1992-1-1
table 10.4
108
BS EN 1992-1-1
table 10.5
Table 15.7
Allowance Da
2
for tolerances for the clear distance between the faces of the supports
Support material Da
2
Steel or precast concrete 10≤/1200≤30mm
Brickwork or cast in-situ concrete 15≤/1200+5≤40mm
Note
=spanlength
109
Designfortheexecutionstages
16
Design for the execution stages
Forbridgesbuiltinstages,accountoftheconstructionprocedureshouldbeconsideredat
serviceabilityandultimatelimitstates.
Serviceabilitycriteriaforthecompletedstructureneednotbeappliedtointermediateexecution
stages,providedthatdurabilityandfinalappearanceofthecompletedstructurearenotaffected
(e.g. deformations). Even for bridges or elements of bridges in which the limit-state of
decompressionischeckedunderthequasi-permanentorfrequentcombinationofactionson
the completed structure, tensile stresses less than
1.0
ctm
() under the quasi-permanent
combinationofactionsduringexecutionarepermitted.Forbridgesorelementsofbridgesin
which the limit-state of cracking is checked under frequent combination on the completed
structure,thelimitstateofcrackingshouldbeverifiedunderthequasi-permanentcombination
ofactionsduringexecution.
BS EN 1992-2
113
BS EN 1992-2
113.3.2
110
Design aids
Thefollowingtext,tablesandfigureshavebeenderivedfromEurocode2andareprovidedas
anaidtodesignersintheUK.
Design for bending
Determinewhether ≤ornot(i.e.whetherunder-reinforcedornot).
where
 =
Ed
/(
2
ck
)
where
= effectivedepth=–cover–f
link
–f/2
= widthofsection
Forrectangularsections'maybedeterminedfromTable17.1or,forslabsonly,Table17.2
maybeused.'isdependentontheconcretestrengthandtheredistributionratioused.
Fornon-rectangularsection/limitsgiveninTable17.1maybeused.
If
≤',sectionisunder-reinforced.
Forrectangularsections:
s1
=
Ed
/
yd
where
s1
= areaoftensilereinforcement
Ed
= designmoment
yd
=
yk
/g
S
=500/
1.15
=434.8MPa
= [0.5+0.5(1–3.53n)
0.5
]≤0.95
n = factordefiningeffectivestrength
= 1.0–(
ck
–50)/200(seeTable6.1)
Forflangedbeamswhere<1.25
f
,
s1
=
Ed
/
yd
= depthtoneutralaxis
f
= thicknessofflange
For flanged beams where ≥ 1.25
f
, refer to      

[
25
]
If >',sectionisover-reinforcedandrequirescompressionreinforcement.

s2
=(
Ed
–'
Ed
)/
sc
(–
2
)
where

s2
= compressionreinforcement
'
Ed
= '
2
ck

sc
= 700(
u
–
2
)/
u
≤
yd
where

2
=effectivedepthtocompressionreinforcement

u
=(d–l/z)
d =redistributionratio
When
yk
=500MPa,
sc
=
yd
unless
2
/
u
≥0.379.
Totalareaoftensionsteel
s1
='
Ed
/(
yd
)+
s2
sc
/
yd
17
17.1
Section 4
111
Designaids
Table 17.1
Limiting values of K' and x
u
/d
Percentage
redistribution
d
( Redistribution
ratio)
f
ck
50 55 60 70
n
1.000 0.975 0.950 0.900
l
0.800 0.788 0.775 0.750
e
cu2
0.0035 0.0031 0.0029 0.0027
k
1
or k
3
0.44 0.54 0.54 0.54
k
2
= k
4
1.251 1.310 1.357 1.409
0 1.00
' 0.167 0.132 0.123 0.110
u
/ 0.448 0.351 0.339 0.326
5 0.95
' 0.155 0.119 0.111 0.099
u
/ 0.408 0.313 0.302 0.291
1 0 0.90
' 0.142 0.107 0.099 0.088
u
/ 0.368 0.275 0.265 0.256
1 5 0.85
' 0.129 0.093 0.087 0.077
u
/ 0.328 0.237 0.228 0.220
Table 17.2
Limiting values of K' and x
u
/d for slabs
Percentage
redistribution
d
( Redistribution
ratio)
f
ck
50 55 60 70
n
1.000 0.975 0.950 0.900
l
0.800 0.788 0.775 0.750
e
cu2
0.0035 0.0031 0.0029 0.0027
k
1
or k
3
0.4 0.4 0.4 0.4
k
2
= k
4
1.000 1.048 1.086 1.127
0 1.00
' 0.207 0.193 0.181 0.163
u
/ 0.600 0.573 0.553 0.532
5 0.95
' 0.194 0.181 0.170 0.152
u
/ 0.550 0.525 0.507 0.488
1 0 0.90
' 0.181 0.169 0.158 0.141
u
/ 0.500 0.477 0.461 0.444
1 5 0.85
' 0.167 0.155 0.145 0.130
u
/ 0.450 0.429 0.415 0.399
2 0 0.80
' 0.152 0.141 0.132 0.118
u
/ 0.400 0.382 0.368 0.355
2 5 0.75
' 0.136 0.126 0.118 0.105
u
/ 0.350 0.334 0.322 0.311
3 0 0.70
' 0.120 0.111 0.103 0.092
u
/ 0.300 0.286 0.276 0.266
112
17.2
17.2.1
17.2.2
17.2.3
Design for beam shear
Requirement for shear reinforcement
If
Ed
>
Rd,c
thenshearreinforcementisrequired
where

Ed
=
Ed
/
w
,forsectionsshearreinforcement(i.e.slabs)

Rd,c
= shearresistancewithoutshearreinforcement,fromTable17.3
Table 17.3
Shear resistance without shear reinforcement, v
Rd,c
(MPa)
r
l
= A
sl
/b
w
d
Effective depth d (mm)
200 225 250 275 300 350 400 450 500 600 750
0.25% 0.54 0.52 0.50 0.48 0.47 0.45 0.43 0.41 0.40 0.38 0.36
0.50% 0.59 0.57 0.56 0.55 0.54 0.52 0.51 0.49 0.48 0.47 0.45
0.75% 0.68 0.66 0.64 0.63 0.62 0.59 0.58 0.56 0.55 0.53 0.51
1.00% 0.75 0.72 0.71 0.69 0.68 0.65 0.64 0.62 0.61 0.59 0.57
1.25% 0.80 0.78 0.76 0.74 0.73 0.71 0.69 0.67 0.66 0.63 0.61
1.50% 0.85 0.83 0.81 0.79 0.78 0.75 0.73 0.71 0.70 0.67 0.65
1.75% 0.90 0.87 0.85 0.83 0.82 0.79 0.77 0.75 0.73 0.71 0.68
≥2.00% 0.94 0.91 0.89 0.87 0.85 0.82 0.80 0.78 0.77 0.74 0.71
Notes
1 TablederivedfromBSEN1992-1-1andUKNationalAnnex.
2 Tablecreatedfor
ck
=30MPaassumingverticallinks.
3 Forr
l
≥0.4%and
ck
= 25MPa,applyfactorof0.94
ck
= 40MPa,applyfactorof1.10
ck
≥ 50MPa,applyfactorof1.19

ck
= 35MPa,applyfactorof1.05
ck
= 45MPa,applyfactorof1.14
Section capacity check
If
Ed,z
>
Rd,max
thensectionsizeisinadequate
where

Ed,z
=
Ed
/
w
=
Ed
/
w
0.9,forsectionsshearreinforcement

Rd,max
 = capacityofconcretestrutsexpressedasastressintheverticalplane
=
Rd,max
/
w
=
Rd,max
/
w
0.9
Rd,max
canbedeterminedfromTable17.4,initiallycheckingatcoty=2.5.Shoulditbe
required,agreaterresistancemaybeassumedbyusingalargerstrutangle,y.
Shear reinforcement design
sw
/≥
Ed,z
w
/
ywd
coty
where

sw
= areaofshearreinforcement(verticallinksassumed)
 = spacingofshearreinforcement

Ed,z
=
Ed
/
w
asbefore

w
= breadthoftheweb

ywd
=
ywk
/g
S
=designyieldstrengthofshearreinforcement
Alternatively,
sw
/permetrewidthof
w
maybedeterminedfromFigure17.1a)or17.1b)as
indicatedbythebluearrowsinFigure17.1a).Thesefiguresmayalsobeusedtoestimatethe
valueofcoty.
Section 7.3.2
Section 7.3.3
Section 7.2
113
Designaids
Beamsaresubjecttoaminimumshearlinkprovision.Assumingverticallinks,
sw,min
/
w
≥0.08
ck
0.5
/
yk
(seeTable17.5).
Table 17.4
Capacity of concrete struts expressed as a stress, v
Rd,max
, where z = 0.9d
f
ck
v
Rd,max
(MPa)
v
cot y 2.50 2.14 1.73 1.43 1.19 1.00
y
21.8º 25º 30º 35º 40º 45º
25
3.10 3.45 3.90 4.23 4.43 4.50 0.540
30
3.64 4.04 4.57 4.96 5.20 5.28 0.528
35
4.15 4.61 5.21 5.66 5.93 6.02 0.516
40
4.63 5.15 5.82 6.31 6.62 6.72 0.504
45
5.09 5.65 6.39 6.93 7.27 7.38 0.492
50
5.52 6.13 6.93 7.52 7.88 8.00 0.480
Notes
1 TablederivedfromBSEN1992-1-1andUKNationalAnnexassumingverticallinks,i.e.cota=0
2 v=0.6[1–(
ck
/250)]
3
Rd,max
=
cd
(coty+cota)/(1+cot
2
y)
Table 17.5
Values of A
sw,min
/sb
w
× 10
3
for beams for vertical links and f
yk
= 500 MPa
Concrete class
C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60
sw,min

w
x10
3
0.72 0.80 0.88 0.95 1.01 1.07 1.13
4.0
3.0
2.0
5.0
6.0
7.0
8.0
02468
10
12
14
C35/45
C40/50
C45/55
0.0
1.0
2.14 1.73 1.43
1.19
1.00
SeeFig.17.1b)
A
sw
/srequired per metre width of b
w
f
ywk
= 500 MPa
v
Rd,max
forcoty=2.5
v
Ed,z
(MPa)
C30/37
C20/25
C25/30
≥C50/60
Figure 17.1a)
Diagram to determine A
sw
/s required (for beams with high shear stress)
Section 15.2.6
114
C20/25
C25/30
C30/37
C30/37
C35/45
C40/50
C45/55
C50/60
4.0
3.0
2.0
1.0
0.0
0
1
2
3
4
f
ywk
= 500 MPa
sw,min
/
forbeams
Rangeof
Rd,c
forrange
=200mm,r=2.0%
to
=750mm,r=0.5%
C25/30
A
sw
/srequired per metre width of b
w
v
Ed,z
(MPa)
C20/25
Figure 17.1b)
Diagram to determine A
sw
/s required (for slabs and beams with low shear stress)
Design for punching shear
Determine if punching shear reinforcement is required, initially at
1
, then if necessary at
subsequentperimeters,
i
.
If
Ed
>
Rd,c
thenpunchingshearreinforcementisrequired
where

Ed
= b
Ed
/
i
where
b =factordealingwitheccentricity(seeSection8.2)

Ed
=designvalueofappliedshearforce

i
=lengthoftheperimeterunderconsideration(seeSections8.3,8.7and15.4.3)
 =meaneffectivedepth

Rd,c
=shearresistancewithoutshearreinforcement(seeTable17.3)
Forverticalshearreinforcement
(
sw
/
r
)=
1
(
Ed
–0.75
Rd,c
)/(1.5
ywd,ef
)
where

sw
= areaofshearreinforcementinoneperimeteraroundthecolumn.
For
sw,min
seeSection15.4.3

r
= radialspacingofperimetersofshearreinforcement

1
= basiccontrolperimeter(seeFigures8.3and8.4)

ywd,ef
= effectivedesignstrengthofreinforcement=(250+0.25)≤
ywd
.ForClass500
shearreinforcementseeTable17.6
Table 17.6
Values of f
ywd, ef
for Class 500 reinforcement
d
150 200 250 300 350 400 450
f
ywd,ef
287.5 300 312.5 325 337.5 350 362.5
17.3
Section 8.21
Section 8.5
Section 15.4.3
115
Designaids
17.4
17.4.1
17.4.2
Design for axial load and bending
General
Incolumns,designmoments
Ed
anddesignappliedaxialforce
Ed
shouldbederivedfromanalysis,
considerationofimperfectionsand,wherenecessary,2ndordereffects(seeSection5.6).
Design by calculation
Assumingtwolayersofreinforcement,
s1
and
s2
,thetotalareaofsteelrequiredinacolumn,
s
,maybecalculatedasshownbelow.
Foraxialload

sN
/2 = (
Ed
–a
cc
n
ck

c
/g
C
)/(s
sc
–s
st
)
where

sN
= totalareaofreinforcementrequiredtoresistaxialloadusingthismethod.
sN
=
s1
+
s2
and
s1
=
s2
where
s1
(
s2
) = areaofreinforcementinlayer1(layer2)(seeFigure6.3)

Ed
= designvalueofaxialforce
a
cc
=
0.85
n = 1for≤C50/60(seeTable6.1when
ck
>50)
 = breadthofsection

c
= effectivedepthofconcreteincompression=l≤
where
l = 0.8for≤C50/60(seeTable6.1when
ck
>50)
 = depthtoneutralaxis
 = heightofsection
g
C
=
1.5
s
sc
,(s
st
)= stressincompression(andtension)reinforcement
Formoment

sM
=

Ed
–a
cc
n
ck

c
(/2–
c
/2)/g
C
2 (/2–
2
)(s
sc
+s
st
)
where

sM
= totalareaofreinforcementrequiredtoresistmomentusingthismethod
sM
=
s1
+
s2
and
s1
=
s2
Solution:iterate suchthat
sN
=
sM
.
Section 5.6
Section 6.2.2
116
17.4.3
Column charts
Alternatively
s
maybeestimatedfromcolumncharts.
Figures17.2a)toe)givenon-dimensionaldesignchartsforsymmetricallyreinforcedrectangular
columnswherereinforcementisassumedtobeconcentratedinthecorners.
Inthesecharts:
a
cc
= 0.85
ck
≤ 50MPa
Simplifiedstressblockassumed.
s
= totalareaofreinforcementrequired
= (
s
yk
/ 
ck
)
ck
/
yk
where
(
s
yk
/ 
ck
) is derived from the appropriate design chart interpolating as necessary
betweenchartsforthevalueof
2
/forthesection.
Wherereinforcementisnotconcentratedinthecorners,aconservativeapproachistocalculate
aneffectivevalueof
2
asillustratedinFigures17a)toe).
2
=effectivedepthtosteelinlayer2.
Figures17.3a)toe)givenon-dimensionaldesignchartsforcircularcolumns.
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
0.05
0.10
0.15 0.20 0.25 0.30 0.35
0.40
0.45
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Af bhf
s y
k c
k
/
K
r
= 0.2
Figure 15.5(a)
Rectangular columns /= 0.05dh
2
h/2
h
d
2
Centroid of bars in
half section
Ratio d
2
/h = 0.05
N/
Ed
/bhf
ck
M
Ed
/bh
2
f
ck
Figure 17.2a)
Rectangular columns (f
ck
50 MPa, f
yk
= 500 MPa) d
2
/h = 0.05
117
Designaids
h/2
h
d
2
Centroid of bars in
half section
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0 0.05
0.10 0.15 0.20
0.25
0.30
0.35
0.40
0.45
K
r
=1
K
r
= 0.2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Figure 15.5(b)
Rectangular columns /= 0.10dh
2
A f bhf
s yk
/
c
k
Ratio d
2
/h = 0.10
N
Ed
/bhf
ck
M
Ed
/bh
2
f
ck
Figure 17.2b)
Rectangular columns (f
ck
50 MPa, f
yk
= 500 MPa) d
2
/h = 0.10
h/2
h
d
2
Centroid of bars in
half section
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0
0.1
0.2
0.3
0.4
0.5
0.7
0.9
1.0
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
0.05
0.10 0.15 0.20 0.25
0.30
0.35
0.40
A f
bhf
s y
k c
k
/
K
r
=1
K
r
= 0.2
Figure 15.5(c)
Rectangular columns /= 0.15dh
2
0.6
0.8
Ratio d
2
/h = 0.15
M
Ed
/bh
2
f
ck
N/
Ed
/bhf
ck
Figure 17.2c)
Rectangular columns (f
ck
50 MPa, f
yk
= 500 MPa) d
2
/h = 0.15
118
h/2
h
d
2
Centroid of bars in
half section
0 0.05
0.10
0.15 0.20 0.25 0.30
0.35
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.1
1.3
0.3
0.4
0.5
0.6
0.7
0.8
0.9
A f
bhf
s yk c
k
/
Ratio d
2
/h = 0.20
Figure 15.4(d)
Rectangular columns /= 0.20dh
2
K
r
= 1
K
r
= 0.2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
N/
Ed
/bhf
ck
M
Ed
/bh
2
f
ck
Figure 17.2d)
Rectangular columns (f
ck
50 MPa, f
yk
= 500 MPa) d
2
/h = 0.20
A f
bhf
s yk ck
/
Figure 15.5(e)
Rectangular columns /= 0.25dh
2
K
r
= 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0 0.05 0.10 0.15
0.20
0.25
0.30
1.0
0.9
0. 8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
K
r
= 1
h/2
h
d
2
Centroid of bars in
half section
N/
Ed
/bhf
ck
M
Ed
/bh
2
f
ck
Ratio d
2
/h = 0.25
Figure 17.2e)
Rectangular columns (f
ck
50 MPa, f
yk
= 500 MPa) d
2
/h = 0.25
119
Designaids
K
r
=1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
1.0
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0.2
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0 0.01 0.02 0.03 0.04 0.05
0.06
0.07
0.9
d
h
File Concise Eurocode
Circular Columns 0.6
v1 10.11.08
A
s
f
yk
/h
2
f
ck
Ratio d/h = 0.6
N
Ed
/h
2
f
ck
M
Ed
/h
3
f
ck
Figure 17.3a)
Rectangular columns (f
ck
50 MPa, f
yk
= 500 MPa) d
2
/h = 0.6
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0 0.02 0.04
0.06
0.08
0.10
0.12
0.2
0.3
0.4
0.5
0.6
0.7
0.8
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0
0.1
0.2
0.3
File Concise Eurocode
d
h
Ratio d/h = 0.7
N
Ed
/h
2
f
ck
M
Ed
/h
3
f
ck
K
r
=1
A
s
f
yk
/h
2
f
ck
Figure 17.3b)
Rectangular columns (f
ck
50 MPa, f
yk
= 500 MPa) d
2
/h = 0.7
120
d
h
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0 0.02 0.04
0.06
0.08 0.10 0.12 0.14
0.16
0.18 0.20
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
Ratio d/h = 0.8
A
s
f
yk
/h
2
f
ck
K
r
=1
N
Ed
/h
2
f
ck
M
Ed
/h
3
f
ck
Figure 17.3c)
Rectangular columns (f
ck
50 MPa, f
yk
= 500 MPa) d
2
/h = 0.8
d
h
0.2
0.3
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0
0.4
0.5
0.6
0.7
0.8
0.9
0 0.05 0.10 0.15 0.20 0.25
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0.1
File Concise Eurocode
Circular Columns 0.85
Ratio d/h = 0.85
K
r
=1
A
s
f
yk
/h
2
f
ck
N
Ed
/h
2
f
ck
M
Ed
/h
3
f
ck
Figure 17.3d)
Rectangular columns (f
ck
50 MPa, f
yk
= 500 MPa) d
2
/h = 0.85
121
Designaids
d
h
0.05 0.10 0.15 0.20 0.25 0.30
0.7
0.2
0.3
0.4
0.5
0.6
0.8
0.9
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
File Concise Eurocode
Circular Columns 0.9
v1 10.11.08
Ratio d/h = 0.9
K
r
=1
A
s
f
yk
/h
2
f
ck
N
Ed
/h
2
f
ck
M
Ed
/h
3
f
ck
Figure 17.3e)
Rectangular columns (f
ck
50 MPa, f
yk
= 500 MPa) d
2
/h = 0.9
122
18 References
1 BRITISHSTANDARDSINSTITUTION.BSEN1992-1-1,Eurocode2–
Part1-1:BSI,2004,incorporatingcorrigendum
dated12-11-2007.
1a NationalAnnextoEurocode2–Part1-1.BSI,2005.
2 BRITISHSTANDARDSINSTITUTION.BSEN1992-2,Eurocode2–
Part2:BSI,2005,incorporatingcorrigendum
dated12-11-2007.
2a NationalAnnextoEurocode2–Part2.BSI,2007.
3 BRITISHSTANDARDSINSTITUTION.PD6687-2
2005.BSI,2008.
4 WOOD,RH.Thereinforcementofslabsinaccordancewithapre-determinedfieldof
moments1968,No.2,pp.69–76.
5 DENTON,SR&BURGOYNE,CJ.Theassessmentofreinforcedconcreteslabs.
,7thMay1996,Vol.74,No.9,pp.147–152.
6 BRITISHSTANDARDSINSTITUTION.PD6687
BSI,2006.
7 BRITISHSTANDARDSINSTITUTION.BSEN1990,Eurocode:BSI,2002,
incorporatingamendmentNo.1.
7a NationalAnnextoEurocode.BSI,2004,incorporatingamendmentNo.1.
8 BRITISHSTANDARDSINSTITUTION.BS8500-1:–
BSI,2006.
9 BRITISHSTANDARDSINSTITUTION.BSEN1991,Eurocode1:(10parts).
BSI,2002–2006.
9a NationalAnnexestoEurocode1.BSI,20052009andinpreparation.
10 BRITISHSTANDARDSINSTITUTION.ENV13670-1:2008:
BSI,2000.
11 BRITISHSTANDARDSINSTITUTION.BSEN13670..BSI,
due2009.
12 BRITISHSTANDARDSINSTITUTION.BSEN1997,Eurocode7:
.BSI,2004.
12a NationalAnnextoEurocode7–Part1.BSI,2007.
13 BRITISHSTANDARDSINSTITUTION.PD6694-1
BSI,due2009.
14 BRITISHSTANDARDSINSTITUTION.BSEN206-1.
BSI,2000.
15 BRITISHSTANDARDSINSTITUTION.BSEN197-1
BSI,2000.
16 BRITISHSTANDARDSINSTITUTION.BS4449:
BSI,2005.
17 BRITISHSTANDARDSINSTITUTION.BSEN10080:
BSI,2005.
18 BRITISHSTANDARDSINSTITUTION.BS5896.
BSI,1980,incorporatingamendmentNo.1.
19 BUILDINGRESEARCHESTABLISHMENT.BRESpecialDigest1.
BRE,2005.
123
References
20 HENDY,CR&SMITH,DA.ThomasTelford,2007.
21 ENV1992-1-1:Eurocode2:
BSI,1992(supersededbyreference1).
22 INTERNATIONALSTANDARDSORGANISATION,ISO/FDIS.17660-2:
.ISO,2005.
23 BRITISHSTANDARDSINSTITUTION.BSEN1536:
BSI,2000.
24 BRITISHSTANDARDSINSTITUTION.BS5400:S
BSI,1990.
25 BROOKER,Oetal.TheConcreteCentre,
2006.
3
Guide to presentation
Grey shaded text,
tables and gures
Modied Eurocode 2 text and additional text, derived
formulae, tables and illustrations not from Eurocode 2
Yellow shaded text,
tables and gures
Additional text from PD 6687
[6]
or PD 6687-2
[3]
BS EN 1992-1-1
6.4.4
Relevant code and clauses or gure numbers
BS EN 1992-1-1
NA
From the relevant UK National Annex
BS EN 1992-1-1
6.4.4 & NA
From both Eurocode 2-1-1 and UK National Annex
Section 5.2
Relevant parts of this publication
1.0
Nationally Determined Parameter. UK values have
been used throughout
4
Concise Eurocode 2 for Bridges
This publication summarises the material that will
be commonly used in the design of reinforced and
prestressed concrete bridges using Eurocode 2.
With extensive clause referencing, readers are guided through
Eurocode 2, other relevant European standards and non-
contradictory complementary information. The publication,
which includes design aids, aims to help designers with the
transition to design using Eurocodes.
Concise Eurocode 2 for Bridges is part of a range of resources
available from the cement and concrete industry to assist
engineers with the design of a variety of concrete bridges. For
more information visit www.concretecentre.com
Owen Brooker is senior structural engineer for The
Concrete Centre. He is author of several publications,
including the well received series How to design concrete
structures using Eurocode 2. He regularly lectures and
provides training to structural engineers, particularly on the
application of Eurocode 2.
Paul Jackson is a technical director of Gifford, which he
joined from BCA in 1988. He has worked on bridge design,
assessment, construction, strengthening and research. He
has contributed extensively to codes of practice and is
currently a member of the BSI committee for bridges and
convenor of its working group for concrete bridges. He
served on the project team for EN 1992-2.
Stephen Salim is a senior engineer with Gifford. He has
worked on bridge assessment, feasibility studies, design,
construction supervision and research. He was also involved
in the calibration work of BS EN 1992-2; some of the
proposals arising from this work were adopted in the UK
National Annex.
CCIP-038
Published 2009
ISBN 978-1-904818-82-3
Price Group P
© MPA – The Concrete Centre
Riverside House, 4 Meadows Business Park,
Station Approach, Blackwater, Camberley, Surrey, GU17 9AB
Tel: +44 (0)1276 606800 Fax: +44 (0)1276 606801
www.concretecentre.com